...
首页> 外文期刊>Journal of the Brazilian Society of Mechanical Sciences and Engineering >Heat transfer characteristics in discontinuous silicon carbide-reinforced aluminum multiphase composites containing nano-graphene additives: a micromechanics-based multistep technique
【24h】

Heat transfer characteristics in discontinuous silicon carbide-reinforced aluminum multiphase composites containing nano-graphene additives: a micromechanics-based multistep technique

机译:含纳米石墨烯添加剂的不连续碳化硅增强铝多相复合材料的传热特性:一种基于微观力学的多步技术

获取原文
获取原文并翻译 | 示例

摘要

A nested micromechanical technique is proposed to predict thermal conductivities of discontinuous silicon carbide (SiC)/graphene nanoplatelet (GNP)-reinforced aluminum matrix multiphase composites (AMMCs). Agglomeration and waviness of GNPs and interfacial thermal resistance (ITR) between the nanofiller and metal matrix are considered to perform a more realistic simulation process. The present predictions are compared with experimental measurements to verify the validity of the micromechanics approach. The effects of volume fraction, waviness, size and nonuniform distribution of GNPs, graphene/metal ITR, volume fraction, length and diameter of discontinuous SiC and SiC/matrix ITR on the AMMC thermal conductivities in the axial and transverse directions are investigated. The results show that heat in discontinuous SiC/metal composites is better transferred by a uniform distribution of GNPs in the metal matrix. The increase in graphene volume fraction leads to an enhancement in the heat transfer capacity for the metal-based multiphase composites. It is found that GNP with higher length and thickness can significantly improve the AMMC thermal conductivities. However, a great decrease in the thermal conductivities is observed by the ITRs and waviness of nano-graphene. Also, formation of GNP agglomeration drastically reduces the AMMC heat transfer capacity. Increasing the length of discontinuous SiC up to a certain value significantly increases the AMMC thermal conductivity in the axial direction, however, it has a negative effect on the transverse thermal conductivity.
机译:提出了一种嵌套微力学技术来预测不连续碳化硅(SiC)/石墨烯纳米片(GNP)增强铝基多相复合材料(AMMCs)的热导率。GNPs的团聚和波纹度以及纳米填料和金属基体之间的界面热阻(ITR)被认为可以执行更真实的模拟过程。将本预测结果与实验结果进行了对比,验证了微观力学方法的有效性。研究了GNPs、石墨烯/金属ITR的体积分数、波纹度、粒径和不均匀分布对AMMC轴向和横向热导率的影响。结果表明,GNPs在金属基体中的均匀分布可以更好地传递不连续SiC/金属复合材料中的热量。石墨烯体积分数的增加导致金属基多相复合材料的传热能力增强。研究发现,长度和厚度越大的GNP可以显著提高AMMC的导热系数。然而,通过ITRs和纳米石墨烯的波纹度观察到热导率的大幅下降。此外,GNP团聚的形成大大降低了AMMC的传热能力。将不连续SiC的长度增加到一定值会显著提高AMMC在轴向方向的热导率,但对横向热导率有负面影响。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号