首页> 外文期刊>Polymer Composites >An experimental and numerical study to enhance the thermal characteristics of LA/CuO/Al2O3 nanocomposites as a phase change material for building cooling applications
【24h】

An experimental and numerical study to enhance the thermal characteristics of LA/CuO/Al2O3 nanocomposites as a phase change material for building cooling applications

机译:An experimental and numerical study to enhance the thermal characteristics of LA/CuO/Al2O3 nanocomposites as a phase change material for building cooling applications

获取原文
获取原文并翻译 | 示例
       

摘要

Abstract To improve the thermophysical properties of lauric acid (LA), several loadings of copper oxide(CuO) and aluminum oxide (Al2O3) nanoparticles (1.25, 2.5, 5, and 10 wt%) were used. In this present study, the possibility of varied concentration nanoparticles to create LA embedded nanocomposite phase change material (NPCM) with increased performance is also studied and compared. The analytical expressions for estimating both thermal conductivity (TC) and dynamic viscosity of the NPCM were devised, and the findings were confirmed against the experiment. Employing a computational fluid dynamics (CFD) model, the effects of nanoparticle concentration on LA's rate of melting and solidification are examined. The morphological structures of nanoparticles were seen using a field emission scanning electron microscope (FESEM), and their crystalline structure was determined using X‐ray diffraction (XRD) analysis. Fourier transform infrared spectroscopy (FTIR) was used to verify NPCMs. The impact of nanoparticles on NPCM was demonstrated by the thermal conductivity (KD2 test) findings. The current results suggest that distributing nanoparticles in lower concentrations speeds up the HTR. Compared to copper oxide (CuO) nanoparticles, the enhancement in the thermal performance of LA is more significant for aluminum oxide (Al2O3).

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号