...
首页> 外文期刊>International journal of hydrogen energy >Effects of nanofluids on the photovoltaic thermal system for hydrogen production via electrolysis process
【24h】

Effects of nanofluids on the photovoltaic thermal system for hydrogen production via electrolysis process

机译:Effects of nanofluids on the photovoltaic thermal system for hydrogen production via electrolysis process

获取原文
获取原文并翻译 | 示例

摘要

In this study the photovoltaic hybrid thermal system has been fabricated for an effective increase in production of electric output. Further the PV/T system also designed to produce the hydrogen from the water through electrolysis process. Several studies reported drastic reduction in the electric output due to high cell temperatures. Nevertheless, these effects are reduced by introduction of the nanoparticles. This study also examines the nanofluids MWCNT and Fe2O3 as the passive cooling agent for higher electric output production without any major energy loss. The nanoparticles are dispersed in the water at the optimum fashions to increase the thermal and electrical efficiency of the system. Both MWCNT and Fe2O3 nanofluids were passed to the hybrid system at the flow rate of 0.0075 kg/s and 0.01 kg/s. The highest electrical output and thermal efficiency has been obtained at 12.30 P.M. With regard to the production of hydrogen, the maximum productions were observed from 12.15 P.M. to 13.00 P.M.. Implementation of this method compensates the energy loss with superior electrical output compared to previous conventional method. By compelling the results, 0.01 kg/s subjected to be efficient on the electricity production and the hydrogen generation. Further, employing the electrolyzer as the attached to the hybrid system produces the hydrogen, which can be stored for future use as the promising source of energy. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号