首页> 外文期刊>Cancer gene therapy >SNHG17/miR-384/ELF1 axis promotes cell growth by transcriptional regulation of CTNNB1 to activate Wnt/beta-catenin pathway in oral squamous cell carcinoma
【24h】

SNHG17/miR-384/ELF1 axis promotes cell growth by transcriptional regulation of CTNNB1 to activate Wnt/beta-catenin pathway in oral squamous cell carcinoma

机译:SNHG17/miR-384/ELF1 axis promotes cell growth by transcriptional regulation of CTNNB1 to activate Wnt/beta-catenin pathway in oral squamous cell carcinoma

获取原文
获取原文并翻译 | 示例
           

摘要

Increasing evidence proved the abnormal expression of long non-coding RNAs (lncRNAs) in various human malignancies, including oral squamous cell carcinoma (OSCC). Nevertheless, limited explorations concern the role of lncRNA small nucleolar RNA host gene 17 (SNHG17) in OSCC. Herein, SNHG17 was disclosed to be remarkably upregulated in OSCC cell lines and promoted OSCC cell growth. Further mechanistic studies, including DNA/RNA pull down, RIP, ChIP, and luciferase reporter gene assays, were conducted. It was confirmed that Wnt/beta-catenin signaling pathway was involved in the SNHG17-mediated OSCC cell growth. Moreover, E74 like ETS transcription factor 1 (ELF1) was identified as the transcription activator of CTNNB1 (beta-catenin mRNA) in OSCC. Inspired by competing for endogenous RNAs (ceRNAs) network, we were pleasantly surprised to find that SNHG17 and ELF1 functioned as ceRNAs in OSCC via competitively binding to microRNA-384 (miR-384). By using rescue assays, we revealed that SNHG17 facilitated OSCC cell growth through modulating miR-384/ELF1 axis. Importantly, we certified that ELF1 was indispensable for SNHG17-affected OSCC progression. Collectively, it can be concluded that SNHG17/miR-384/ELF1 axis contributed to OSCC cell growth via promoting CTNNB1 expression, thus activating Wnt/beta-catenin signaling pathway.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号