...
首页> 外文期刊>Journal of Mathematical Biology >Substrate inhibition can produce coexistence and limit cycles in the chemostat model with allelopathy
【24h】

Substrate inhibition can produce coexistence and limit cycles in the chemostat model with allelopathy

机译:Substrate inhibition can produce coexistence and limit cycles in the chemostat model with allelopathy

获取原文
获取原文并翻译 | 示例

摘要

Abstract In this work, we consider a model of two microbial species in a chemostat in which one of the competitors can produce a toxin (allelopathic agent) against the other competitor, and is itself inhibited by the substrate. The existence and stability conditions of all steady states of the reduced model in the plane are determined according to the operating parameters. With Michaelis-Menten or Monod growth functions, it is well known that the model can have a unique positive equilibrium which is unstable as long as it exists. By including both monotone and non-monotone growth functions (which is the case when there is substrate inhibition), it is shown that a new positive equilibrium point exists which can be stable according to the operating parameters of the system. This general model exhibits a rich behavior with the coexistence of two microbial species, the multi-stability, the occurrence of stable limit cycles through super-critical Hopf bifurcations and the saddle-node bifurcation of limit cycles. Moreover, the operating diagram describes some asymptotic behavior of this model by varying the operating parameters and illustrates the effect of the inhibition on the emergence of the coexistence region of the species.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号