首页> 外文期刊>The Journal of Chemical Physics >Multicomponent wavefunction-in-DFT embedding for positronium molecules
【24h】

Multicomponent wavefunction-in-DFT embedding for positronium molecules

机译:Multicomponent wavefunction-in-DFT embedding for positronium molecules

获取原文
获取原文并翻译 | 示例
           

摘要

This work presents an extension of the projector operator embedding scheme of Manby et al. [J. Chem. Theory Comput. 8, 2564 (2012)] in a multicomponent (MC) framework. Here, a molecular system containing electrons and other types of quantum species is divided into a wavefunction (WF) subsystem of interest and a density functional theory (DFT) environment. The WF-in-DFT partition decreases computational costs by partially truncating the WF subsystem basis set at the cost of introducing a controllable embedding error. To explore the applicability of the MC extension, third-order propagator-in-DFT calculations were performed for positron-anion complexes for alkoxides and carboxylates with carbon chains of different sizes. For these systems, it was found that selecting a WF subsystem with the positron and only the oxygen atoms caused an error of 0.1 eV or lower in positron-binding energies, while reducing between 33% and 55% the basis set size. The reduction of computational costs achieved with the embedding scheme allowed us to improve molecular positron-binding energy predictions by performing complete basis set limit extrapolations. Combining the WF-in-DFT embedding and the complete basis set extrapolation, positronium aliphatic alkoxides were predicted to be energetically stable by 0.3 eV with respect to Ps emission. Similarly, positronium carboxylates, both aromatic and aliphatic, were predicted to be stable by 1.3 eV.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号