首页> 外文期刊>Chemical communications >d–sp orbital hybridization: a strategy for activity improvement of transition metal catalysts
【24h】

d–sp orbital hybridization: a strategy for activity improvement of transition metal catalysts

机译:d–sp orbital hybridization: a strategy for activity improvement of transition metal catalysts

获取原文
获取原文并翻译 | 示例
       

摘要

Orbital hybridization to regulate the electronic structures and surface chemisorption properties of transition metals has been extensively investigated for searching high-performance catalysts toward various reactions. Unlike conventional d–d hybridization, the d–sp hybridization interaction between transition metals and p-block elements could result in surprising electronic properties and catalytic activities. This feature article highlights the recent progress in the development of high-performance transition metal-based catalysts through the extraordinary d–sp hybridization strategy, particularly for energy-related electrocatalytic applications. We start by giving an introduction of fundamental concepts associated with electronic structures of transition metal catalysts, including the Sabatier principle, d-band theory, electronic descriptor, as well as the comparison of d–d hybridization and d–sp hybridization strategies. Then, we summarize the theoretical and experimental advances in d–sp hybridization catalysts, including p-block element-doped metal catalysts, intermetallic catalysts and supported metal catalysts, with emphasis on the important roles of d–sp hybridization in tuning catalytic performances. Finally, we present existing challenges and future development prospects for the rational design of advanced d–sp hybridization catalysts.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号