...
首页> 外文期刊>Journal of the Brazilian Society of Mechanical Sciences and Engineering >Topology optimization of cylindrical shells with cutouts for maximum buckling strength
【24h】

Topology optimization of cylindrical shells with cutouts for maximum buckling strength

机译:带切口的圆柱形壳体的拓扑优化,以实现最大屈曲强度

获取原文
获取原文并翻译 | 示例

摘要

In the presence of cutouts, the buckling strength of shell structures under compression significantly decreases. In order to compensate this, these structures are reinforced with stiffeners. In this study, the objective is to optimize the stiffener geometry and pattern on a cylindrical shell with two square holes to maximize the buckling load capacity without increase in its weight. A finite element model is developed to evaluate the buckling load of the structure. A good correlation is observed between the nonlinear analysis results of the model and the numerical and experimental results reported in the literature. Optimization is achieved in two levels. In the first level, topology optimization is performed to obtain the optimal stiffener pattern over the shell surface based on linear eigenvalue buckling analysis. In the second level, the stiffener heights and the shell thickness are optimized using a local search algorithm, Nelder-Mead; the buckling load levels are obtained by carrying out nonlinear buckling analyses in ANSYS. A Python code is developed to implement the optimization method and conduct analyses in ANSYS. The results show that stiffeners need to be introduced around the cutouts and the regions near the top and bottom edges for maximum buckling load capacity. The results also reveal that stiffeners on the mid lateral surfaces of the cylinder do not make significant contribution to the buckling strength. The bucking load of the optimized stiffened geometry is 22 higher than that of the unreinforced geometry having the same weight.
机译:在存在切口的情况下,壳结构在压缩作用下的屈曲强度显著降低。为了弥补这一点,这些结构用加强筋加固。在这项研究中,目标是优化具有两个方孔的圆柱壳上的加劲肋几何形状和图案,以在不增加其重量的情况下最大限度地提高屈曲载荷能力。建立了有限元模型来评估结构的屈曲荷载。模型的非线性分析结果与文献报道的数值和实验结果具有较好的相关性。优化分两个级别实现。在第一级中,基于线性特征值屈曲分析,进行拓扑优化,获得壳面上最优的加劲肋图案。在第二级中,使用局部搜索算法 Nelder-Mead 优化加劲肋高度和壳厚度;屈曲载荷水平是通过在ANSYS中进行非线性屈曲分析获得的。开发Python代码来实现优化方法并在ANSYS中进行分析。结果表明,需要在切口周围以及靠近顶部和底部边缘的区域引入加强筋,以获得最大的屈曲载荷能力。结果还表明,圆柱体中侧表面的加强筋对屈曲强度没有显著贡献。优化的加筋几何形状的屈降载荷比具有相同重量的未加筋几何形状的屈碳荷载高 22%。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号