...
首页> 外文期刊>plos computational biology >Modelling the interaction between stem cells derived cardiomyocytes patches and host myocardium to aid non-arrhythmic engineered heart tissue design
【24h】

Modelling the interaction between stem cells derived cardiomyocytes patches and host myocardium to aid non-arrhythmic engineered heart tissue design

机译:模拟干细胞来源的心肌细胞贴片和宿主心肌之间的相互作用,以帮助非心律失常工程心脏组织设计

获取原文
获取原文并翻译 | 示例

摘要

Application of epicardial patches constructed from human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has been proposed as a long-term therapy to treat scarred hearts post myocardial infarction (MI). Understanding electrical interaction between engineered heart tissue patches (EHT) and host myocardium represents a key step toward a successful patch engraftment. EHT retain different electrical properties with respect to the host heart tissue due to the hiPSC-CMs immature phenotype, which may lead to increased arrhythmia risk. We developed a modelling framework to examine the influence of patch design on electrical activation at the engraftment site. We performed an in-silico investigation of different patch design approaches to restore pre-MI activation properties and evaluated the associated arrhythmic risk. We developed an in silico cardiac electrophysiology model of a transmural cross section of host myocardium. The model featured an infarct region, an epicardial patch spanning the infarct region and a bath region. The patch is modelled as a layer of hiPSC-CM, combined with a layer of conductive polymer (CP). Tissue and patch geometrical dimensions and conductivities were incorporated through 10 modifiable model parameters. We validated our model against 4 independent experimental studies and showed that it can qualitatively reproduce their findings. We performed a global sensitivity analysis (GSA) to isolate the most important parameters, showing that the stimulus propagation is mainly governed by the scar depth, radius and conductivity when the scar is not transmural, and by the EHT patch conductivity when the scar is transmural. We assessed the relevance of small animal studies to humans by comparing simulations of rat, rabbit and human myocardium. We found that stimulus propagation paths and GSA sensitivity indices are consistent across species. We explored which EHT design variables have the potential to restore physiological propagation. Simulations predict that increasing EHT conductivity from 0.28 to 1-1.1 S/m recovered physiological activation in rat, rabbit and human. Finally, we assessed arrhythmia risk related to increasing EHT conductivity and tested increasing the EHT Na+ channel density as an alternative strategy to match healthy activation. Our results revealed a greater arrhythmia risk linked to increased EHT conductivity compared to increased Na+ channel density. We demonstrated that our modeling framework could capture the interaction between host and EHT patches observed in in vitro experiments. We showed that large (patch and tissue dimensions) and small (cardiac myocyte electrophysiology) scale differences between small animals and humans do not alter EHT patch effect on infarcted tissue. Our model revealed that only when the scar is transmural do EHT properties impact activation times and isolated the EHT conductivity as the main parameter influencing propagation. We predicted that restoring physiological activation by tuning EHT conductivity is possible but may promote arrhythmic behavior. Finally, our model suggests that acting on hiPSC-CMs low action potential upstroke velocity and lack of I-K1 may restore pre-MI activation while not promoting arrhythmia.
机译:由人诱导的多能干细胞衍生心肌细胞 (hiPSC-CMs) 构建的心外膜贴片的应用已被提议作为治疗心肌梗死 (MI) 后瘢痕心脏的长期疗法。了解工程心脏组织贴片 (EHT) 与宿主心肌之间的电相互作用是成功植入贴片的关键一步。由于 hiPSC-CMs 不成熟表型,EHT 相对于宿主心脏组织保留了不同的电特性,这可能导致心律失常风险增加。我们开发了一个建模框架来研究贴片设计对植入部位电激活的影响。我们对不同的贴片设计方法进行了计算机模拟研究,以恢复心肌梗死前的激活特性,并评估了相关的心律失常风险。我们开发了宿主心肌透壁横截面的计算机心脏电生理学模型。该模型具有梗死区域、横跨梗死区域的心外膜贴片和沐浴区域。该贴片被建模为一层hiPSC-CM与一层导电聚合物(CP)相结合。组织和斑块的几何尺寸和电导率通过 10 个可修改的模型参数进行整合。我们根据 4 项独立实验研究验证了我们的模型,并表明它可以定性地重现他们的发现。我们进行了全局敏感性分析(GSA)以分离最重要的参数,结果表明,当瘢痕不透壁时,刺激传播主要受瘢痕深度、半径和电导率的控制,以及瘢痕透壁时的EHT贴片电导率。我们通过比较大鼠、兔子和人类心肌的模拟来评估小动物研究与人类的相关性。我们发现刺激传播路径和GSA敏感性指数在物种之间是一致的。我们探索了哪些EHT设计变量有可能恢复生理传播。模拟预测,将 EHT 电导率从 0.28 提高到 1-1.1 S/m 恢复了大鼠、兔和人类的生理激活。最后,我们评估了与增加 EHT 电导率相关的心律失常风险,并测试了增加 EHT Na+ 通道密度作为匹配健康激活的替代策略。我们的研究结果显示,与增加的Na+通道密度相比,与EHT电导率增加相关的心律失常风险更大。我们证明了我们的建模框架可以捕获在体外实验中观察到的宿主和 EHT 贴片之间的相互作用。我们发现,小动物和人类之间的大(斑块和组织尺寸)和小(心肌细胞电生理学)规模差异不会改变EHT贴片对梗死组织的影响。我们的模型表明,只有当瘢痕透壁时,EHT性质才会影响活化时间,并分离出EHT电导率是影响传播的主要参数。我们预测,通过调节 EHT 电导率来恢复生理激活是可能的,但可能会促进心律失常行为。最后,我们的模型表明,作用于 hiPSC-CMs 低动作电位上冲速度和缺乏 I-K1 可能会恢复心肌梗死前激活,同时不促进心律失常。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号