首页> 外文期刊>Nanotechnology >Enhancing capacity and transport kinetics of C@TiO2 core-shell composite anode by phase interface engineering
【24h】

Enhancing capacity and transport kinetics of C@TiO2 core-shell composite anode by phase interface engineering

机译:基于相界面工程提高C@TiO2核壳复合阳极的容量和输运动力学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In nanocomposite electrodes, besides the synergistic effect that takes advantage of the merits of each component, phase interfaces between the components would contribute significantly to the overall electrochemical properties. However, the knowledge of such effects is far from being well developed up to now. The present work aims at a mechanistic understanding of the phase interface effect in C@TiO2 core-shell nanocomposite anode which is both scientifically and industrially important. Firstly, amorphous C, anatase TiO2 and C@anatse-TiO2 electrodes are compared. The C@anatase-TiO2 shows an obvious higher specific capacity (316.5 mAh g(-1) at a current density of 37 mA g(-1) after 100 cycles) and Li-ion diffusion coefficient (4.0 x 10(-14) cm(2) s(-1)) than the amorphous C (178 mAh g(-1) and 2.9 x 10(-15) cm(2) s(-1)) and anatase TiO2 (120 mAh g(-1) and 1.6 x 10(-15) cm(2) s(-1)) owing to the C/TiO2 phase interface effect. Then, C@anatase/rutile-TiO2 is obtained by a heat treatment of the C@anatase-TiO2. Due to an anatase-to-rutile phase transformation and diffusion of C along the anatase/rutile phase interface, additional abundant C/TiO2 phase interfaces are created. This endows the C@anatase/rutile-TiO2 with further boosted specific capacity (409.4 mAh g(-1) at 37 mA g(-1) after 100 cycles) and Li-ion diffusion coefficient (3.2 x 10(-13) cm(2) s(-1)), and excellent rate capability (368.6 mAh g(-1) at 444 mA g(-1)). These greatly enhanced electrochemical properties explicitly reveal phase interface engineering as a feasible way to boost the electrochemical performance of nanocomposite anodes for Li-ion batteries.
机译:在纳米复合电极中,除了利用每个组分的优点的协同效应外,组分之间的相界面对整体电化学性能也有显著贡献。然而,到目前为止,对这种影响的认识还远远没有得到很好的发展。本工作旨在从机理上理解核壳纳米复合阳极C@TiO2具有重要的科学意义和工业意义。首先,比较了无定形C、锐钛矿型TiO2和C@anatse-TiO2电极;由于C/TiO2相,C@anatase-TiO2的比容量(-1)明显高于无定形C(178 mAh g(-1)和2.9 x 10(-15) cm(2) s(-1))和锐钛矿型TiO2(120 mAh g(-1)和1.6 x 10(-15) cm(2) s(-1))界面效应。然后,通过对C@anatase-TiO2进行热处理得到C@anatase/金红石-TiO2。由于锐钛矿到金红石的相变和C沿锐钛矿/金红石相界面的扩散,产生了额外的丰富C/TiO2相界面。这使得C@anatase/金红石型TiO2具有进一步提高的比容量(100次循环后37 mA g(-1)时为409.4 mAh g(-1))和锂离子扩散系数(3.2 x 10(-13) cm(2) s(-1)),以及出色的倍率能力(444 mA g(-1)时为368.6 mAh g(-1))。这些大大增强的电化学性能明确表明,相界面工程是提高锂离子电池纳米复合负极电化学性能的可行途径。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号