...
首页> 外文期刊>International journal of hydrogen energy >Synthesis of strontium chromate-nitrogen and sulfur co-doped graphene and its potential for electrochemical hydrogen storage
【24h】

Synthesis of strontium chromate-nitrogen and sulfur co-doped graphene and its potential for electrochemical hydrogen storage

机译:Synthesis of strontium chromate-nitrogen and sulfur co-doped graphene and its potential for electrochemical hydrogen storage

获取原文
获取原文并翻译 | 示例

摘要

In the present study, monazite-type strontium chromate (SrCrO4) as a ternary metal oxide was prepared by the sol-gel method. Nitrogen and sulfur co-doped graphene decorated with SrCrO4 nanocrystals was synthesized successfully, and the electrochemical hydrogen storage performance of the SrCrO4 and its relative nanocomposites also were investigated by chronopotentiometry (CHP) technique. The effect of doped graphene as a substrate of the SrCrO4 sample on the improvement of the electrochemical hydrogen storage performance was considered as well. The SrCrO4-nitrogen and sulfur co-doped graphene (SrCrO4/NSG) displayed the highest discharge capacity in comparison to SrCrO4-reduced graphene oxide (SrCrO4/rGO), SrCrO4 calcined at 1000 degrees C (SrCrO4 (1000)) and SrCrO4 calcined at 800 degrees C (SrCrO4 (800)). Also, increasing the hydrogen storage capacity of the samples by repeating the cycles indicated the excellent cycle stability of the nanoparticles. In monazite-type structures, oxygen vacancies can be created by thermal treatment. Creating oxygen vacancies can improve redox reactions, which increase the conductivity of the samples and hydrogen storage capacity. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号