首页> 外文期刊>Journal of Applied Polymer Science >Structure–properties‐performance relationships in complex epoxy nanocomposites: A complete picture applying chemorheological and thermo‐mechanical kinetic analyses
【24h】

Structure–properties‐performance relationships in complex epoxy nanocomposites: A complete picture applying chemorheological and thermo‐mechanical kinetic analyses

机译:复杂环氧纳米复合材料的结构-性能-性能关系:应用化学流变学和热机械动力学分析的完整图片

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Abstract Herein the kinetics of network formation (cross‐linking) and network degradation (thermal decomposition) in a complex system based on epoxy resin reinforced with hyperbranched amino polymer‐functionalized nanoparticles (HAPF) were discussed. Five classes of nanoparticles, that is, nano‐SiO2, halloysite nanotubes (HNTs), HNTs@nano‐SiO2 core/shell, HAPF/nano‐SiO2, HAPF/HNTs@nano‐SiO2 core/shell were loaded at 0.5, 1.0, 2.0 (optimal loading among prepared samples), and 5 wt were examined. Parameters of the cure kinetics and degradation were correlated, and the mechanical properties were interpreted in terms of microstructure and rheological analyses. The isothermal chemorheological cure kinetics study (60, 70, and 80°C) revealed a low activation energy for epoxy/HAPF/HNTs@nano‐SiO2 core/shell nanocomposite (72.21 kJ/mol), compared with the blank epoxy (79.99 kJ/mol). Correspondingly, gel time of the system decreased from 1040 to 515 to 237 s upon isotherms of 60, 70, and 80°C, respectively. Tensile strength was also increased vividly (ca. 32), possibly due to the strong interfacial adhesion, which reflected in an induced shear yielding. Nitrogen‐mediated thermal decomposition kinetics suggested an average degradation activation energies of ca. 150 and 210 kJ/mol for the assigned nanocomposites and the blank epoxy, respectively. Overall, there was a complete agreement between the kinetics of network formation and network degradation in the studied epoxy nanocomposite. This work enables understanding of structure‐properties‐performance in complex epoxy nanocomposites.
机译:摘要 本文讨论了基于超支化氨基聚合物功能化纳米颗粒(HAPF)增强环氧树脂的复杂体系中网络形成(交联)和网络降解(热分解)的动力学。以纳米SiO2、埃洛石纳米管(HNTs)、HNTs@nano-SiO2核壳、HAPF/nano-SiO2、HAPF/HNTs@nano-SiO2核壳为研究对象,分别以0.5、1.0、2.0(制备样品间最佳负载量)为研究对象,检测了5 wt%的纳米颗粒。固化动力学和降解参数相关,机械性能通过微观结构和流变学分析进行解释。等温化学流变学动力学研究(60、70和80°C)显示,与空白环氧树脂(79.99 kJ/mol)相比,环氧树脂/HAPF/HNTs@nano-SiO2核壳纳米复合材料的活化能较低(72.21 kJ/mol)。相应地,在60、70和80°C等温线下,体系的凝胶时间分别从1040 s减少到515 s,再到237 s。抗拉强度也显著增加(约32%),这可能是由于强烈的界面粘附力,这反映在诱导剪切屈服上。氮介导的热分解动力学表明,指定的纳米复合材料和空白环氧树脂的平均降解活化能分别约为 150 和 210 kJ/mol。总体而言,所研究的环氧纳米复合材料中网络形成和网络降解的动力学完全一致。这项工作有助于理解复杂环氧纳米复合材料的结构-性能-性能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号