...
首页> 外文期刊>International journal of hydrogen energy >Integrating high-temperature proton exchange membrane fuel cell with duplex thermoelectric cooler for electricity and cooling cogeneration
【24h】

Integrating high-temperature proton exchange membrane fuel cell with duplex thermoelectric cooler for electricity and cooling cogeneration

机译:Integrating high-temperature proton exchange membrane fuel cell with duplex thermoelectric cooler for electricity and cooling cogeneration

获取原文
获取原文并翻译 | 示例
           

摘要

To harvest the waste heat from exothermic reaction processes, a novel hybrid system model mainly incorporating a high-temperature proton exchange membrane fuel cell (HT-PEMFC) and a duplex thermoelectric cooler is conceptualized to theoretically predict the potential performance limit. The duplex thermoelectric cooler is composed of a thermo-electric generator (TEG) and a thermoelectric cooler (TEC), where the TEG harvests the waste heat to generate electricity and the TEC utilizes the generated electricity for cooling production. A mathematical model is established to estimate the proposed system per-formance from both exergetic and energetic perspectives considering various irreversible effects, from which effectiveness and practicality of the proposed system can be examined. The hybrid system maximal output power density allows 14.1% greater than that of the basic HT-PEMFC, whereas the according destruction rate density of exergy is decreased by 7.7%. The feasibility and effectiveness of the proposed system configuration are verified. Moreover, substantial parametric analyses indicate that the proposed system performance can be improved by elevating the HT-PEMFC operating temperature, inlet relative humidity and doping level while worsened by enhancing the leak current density, electrolyte thickness and Thomson coefficient. The results acquired may be helpful in designing and optimizing such an actual hybrid system.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号