...
首页> 外文期刊>Computational statistics >Oblique decision tree induction by cross-entropy optimization based on the von Mises-Fisher distribution
【24h】

Oblique decision tree induction by cross-entropy optimization based on the von Mises-Fisher distribution

机译:Oblique decision tree induction by cross-entropy optimization based on the von Mises-Fisher distribution

获取原文
获取原文并翻译 | 示例

摘要

Oblique decision trees recursively divide the feature space by using splits based on linear combinations of attributes. Compared to their univariate counterparts, which only use a single attribute per split, they are often smaller and more accurate. A common approach to learn decision trees is by iteratively introducing splits on a training set in a top-down manner, yet determining a single optimal oblique split is in general computationally intractable. Therefore, one has to rely on heuristics to find near-optimal splits. In this paper, we adapt the cross-entropy optimization method to tackle this problem. The approach is motivated geometrically by the observation that equivalent oblique splits can be interpreted as connected regions on a unit hypersphere which are defined by the samples in the training data. In each iteration, the algorithm samples multiple candidate solutions from this hypersphere using the von Mises-Fisher distribution which is parameterized by a mean direction and a concentration parameter. These parameters are then updated based on the best performing samples such that when the algorithm terminates a high probability mass is assigned to a region of near-optimal solutions. Our experimental results show that the proposed method is well-suited for the induction of compact and accurate oblique decision trees in a small amount of time.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号