首页> 外文期刊>Journal of the American Chemical Society >Multilevel Computational Studies Reveal the Importance of Axial Ligand for Oxygen Reduction Reaction on Fe–N–C Materials
【24h】

Multilevel Computational Studies Reveal the Importance of Axial Ligand for Oxygen Reduction Reaction on Fe–N–C Materials

机译:Multilevel Computational Studies Reveal the Importance of Axial Ligand for Oxygen Reduction Reaction on Fe–N–C Materials

获取原文
获取原文并翻译 | 示例
       

摘要

The systematic improvement of Fe–N–C materials for fuel cell applications has proven challenging, due in part to an incomplete atomistic understanding of the oxygen reduction reaction (ORR) under electrochemical conditions. Herein, a multilevel computational approach, which combines ab initio molecular dynamics simulations and constant potential density functional theory calculations, is used to assess proton-coupled electron transfer (PCET) processes and adsorption thermodynamics of key ORR intermediates. These calculations indicate that the potential-limiting step for ORR on Fe–N–C materials is the formation of the FeIII–OOH intermediate. They also show that an active site model with a water molecule axially ligated to the iron center throughout the catalytic cycle produces results that are consistent with the experimental measurements. In particular, reliable prediction of the ORR onset potential and the Fe­(III/II) redox potential associated with the conversion of FeIII–OH to FeII and desorbed H2O requires an axial H2O co-adsorbed to the iron center. The observation of a five-coordinate rather than four-coordinate active site has significant implications for the thermodynamics and mechanism of ORR. These findings highlight the importance of solvent–substrate interactions and surface charge effects for understanding the PCET reaction mechanisms and transition-metal redox couples under realistic electrochemical conditions.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号