首页> 外文期刊>Journal of Applied Physics >Modeling coupled single cell electroporation and thermal effects from nanosecond electric pulse trains
【24h】

Modeling coupled single cell electroporation and thermal effects from nanosecond electric pulse trains

机译:模拟纳秒级电脉冲序列的耦合单细胞电穿孔和热效应

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A distributed circuit approach is used to simulate the development of electric potentials across a cell membrane and the resulting poration dynamics for ∼700 ns duration voltage pulses. Besides electric field effects, temperature increases from a pulse train are included on an equal footing to probe heating effects. The results show (i) strong heating and power dissipation at the membrane in keeping with previous simpler models, (ii) an initial spike in the membrane temperature within 100 ns timescales, (iii) a monotonic increase in membrane temperature with successive pulses to about 8 K over twelve pulses within roughly 10 μs, and (iv) large temperature gradients in excess of 2 × 107 K/m at the polar membrane region indicative of a strong source for thermo-diffusive transport. Our results suggest that inherent heating during repeated pulse application may be used to tailor excitation sequences for maximal cellular transport, broaden the permeabilization beyond the polar regions for greater transmembrane conduction, and lower the electric field thresholds for greater efficiency in longer duration irreversible electroporation protocols. More generally, the present analysis represents an initial step toward a comprehensive analysis-based optimization for tumor treatment that could select waveforms for tissues, factor in heating effects (whether for synergistic action or to ascertain safe operating limits), and engineer temporal manipulation of wavetrains to synchronize with timescales of selective bio-processes of interest for desired transient responses.
机译:分布式电路方法用于模拟跨细胞膜的电势发展以及由此产生的持续时间为 ∼700 ns 的电压脉冲的孔化动力学。除了电场效应外,脉冲序列的温度升高与探头加热效应相同。结果表明:(i)膜的强加热和功率耗散与以前的简单模型一致,(ii)在100 ns时间尺度内膜温度的初始峰值,(iii)在大约10 μs的12个脉冲中连续脉冲的膜温度单调升高至约8 K,以及(iv)极性膜区域超过2 × 107 K/m的大温度梯度表明热扩散源很强运输。我们的结果表明,重复脉冲应用期间的固有加热可用于定制激发序列以实现最大的细胞转运,将通透性扩大到极性区域之外以获得更大的跨膜传导,并降低电场阈值以提高效率在更长持续时间的不可逆电穿孔方案中。更一般地说,本分析代表了基于分析的肿瘤治疗综合优化的第一步,该优化可以选择组织的波形,考虑加热效应(无论是协同作用还是确定安全操作极限),并设计波列的时间操纵,以与感兴趣的选择性生物过程的时间尺度同步,以获得所需的瞬态反应。

著录项

  • 来源
    《Journal of Applied Physics》 |2022年第9期|094701-1-094701-17|共17页
  • 作者单位

    Department of Electrical and Computer Engineering, Texas Tech University;

    School of Engineering, Eastern Michigan University;

    School of Nuclear Engineering, Purdue University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类 应用物理学;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号