首页> 外文期刊>Journal of the Brazilian Society of Mechanical Sciences and Engineering >A novel investigation of waste heat recovery from a stationary diesel engine using a dual-loop organic Rankine cycle
【24h】

A novel investigation of waste heat recovery from a stationary diesel engine using a dual-loop organic Rankine cycle

机译:使用双回路有机朗肯循环从固定式柴油发动机中回收废热的新研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

To make full use of the dissipated energy of internal combustion engines (ICEs), it is necessary to recover all the waste heat contained in the intake air, exhaust gases, and the coolant streams. This investigation proposed a dual-loop ORC (DORC) system for waste heat recovery (WHR) of a 12-cylinder stationary heavy-duty Diesel (HDD) engine. The numerical model of the 1000 kW diesel engine is developed 1-dimensionally and validated by experimental data. Regression equation models of output responses are formulated via response surface methodology (RSM). The multi-objective optimization is applied to optimize the responses of the system based on the desirability function approach. A comprehensive sensitivity analysis (SA) by means of RSM is accomplished to discover sensitivity of the start of injection (SOI), engine speed (N), higher pressure of the high-temperature loop (HPHT), and higher pressure of the low-temperature loop (HPLT) on output responses. The SA reveals that total produced power increases by increasing the SOI, N, and HPHT. The engine variables are not affecting the thermal efficiency and exergy destruction rate. Moreover, increasing the HPHT and HPLT boosts the exergy efficiency of the system. The dominant parameter affecting all outputs is the HPLT. Furthermore, the optimized output responses of the system are as follows: the net produced power of 304 kW, the thermal efficiency of 9.75, the exergy efficiency of 45.84, and the exergy destruction rate of 361 kW.
机译:为了充分利用内燃机(ICE)的耗散能量,必须回收进气、废气和冷却液流中所含的所有废热。该研究提出了一种双回路ORC(DORC)系统,用于12缸固定式重型柴油(HDD)发动机的废热回收(WHR)。对1000 kW柴油机的数值模型进行了一维开发,并通过实验数据进行了验证。输出响应的回归方程模型是通过响应面法(RSM)制定的。采用多目标优化方法对基于合意函数方法的系统响应进行优化。通过RSM完成全面的灵敏度分析(SA),以发现喷射开始(SOI)、发动机转速(N)、高温回路的较高压力(HPHT)和低温回路(HPLT)的较高压力对输出响应的敏感性。SA显示,通过增加SOI、N和HPHT,总发电功率增加。发动机变量不影响热效率和能量破坏率。此外,增加HPHT和HPLT可以提高系统的工作效率。影响所有输出的主要参数是 HPLT。此外,该系统的优化输出响应如下:净发电功率为304 kW,热效率为9.75%,运行效率为45。84%,功率破坏率为361 kW。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号