首页> 外文期刊>Archive of Applied Mechanics >Nonlinear dynamic stability analysis of three-dimensional graphene foam-reinforced polymeric composite cylindrical shells subjected to periodic axial loading
【24h】

Nonlinear dynamic stability analysis of three-dimensional graphene foam-reinforced polymeric composite cylindrical shells subjected to periodic axial loading

机译:Nonlinear dynamic stability analysis of three-dimensional graphene foam-reinforced polymeric composite cylindrical shells subjected to periodic axial loading

获取原文
获取原文并翻译 | 示例
       

摘要

Abstract This paper investigates the nonlinear dynamic stability of three-dimensional graphene foam (3D-GrF)-reinforced polymeric composite (RPC) cylindrical shells under the periodic axial loading. Three types of foam distribution are considered and the effective Young’s modulus, Poisson’s ratio and mass density of 3D-GrFRPC shells are obtained by using the mixing rule. Hamilton’s principle is implemented to derive the differential equations of motion on the basis of Donnell’s shell theory and von Kàrmàn geometric nonlinearity. In the framework of the Galerkin method and Airy stress function, the nonlinear transverse vibration differential equation is transformed to the Mathieu–Hill equation. Moreover, the explicit expressions of steady-state vibration amplitude of 3D-GrFRPC shells are obtained via Bolotin’s method. Finally, the effects of foam coefficient, foam distribution, dynamic load factor, static load factor and shell geometry parameters on the nonlinear dynamic stability of 3D-GrFRPC cylindrical shells are discussed.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号