首页> 外文期刊>Journal of Energy Storage >Numerical-experimental method to devise a liquid-cooling test system for lithium-ion battery packs
【24h】

Numerical-experimental method to devise a liquid-cooling test system for lithium-ion battery packs

机译:Numerical-experimental method to devise a liquid-cooling test system for lithium-ion battery packs

获取原文
获取原文并翻译 | 示例
           

摘要

The liquid-cooling system (LCS) of lithium-ion battery (LIB) pack is crucial in prolonging battery lifespan and improving electric vehicle (EV) reliability. This study purposes to control the battery pack's thermal distribution within a desirable level per a new-designed LCS. Both the special experimental platform and LCS model coupled with EV dynamic model are established to pinpoint the optimal matching parameters of components and the system's operational control-strategies. The results show that the deviation between experiment and simulation is within 3.0 % under conventional conditions. Higher flowrate and lower inlet temperature lead to lower battery temperature, while delaying the cooling intervention could reduce power consumption of 20 % around. The multi-objective optimization is conducted to further slash power consumption at 2750 W, and battery temperature at 30.83 degrees C during normal 1C discharge, by using response surface method combined with genetic algorithm II. Moreover, the present optimization also demonstrates a well-balanced solution between the battery temperature and power consumption under drive cycle. Combined with experiment and simulation, this work is valuable for one to design an excellent LCS for LIB packs of EV.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号