...
首页> 外文期刊>Advanced functional materials >Effervescence-Inspired Self-Healing Plastrons for Long-Term Immersion Stability
【24h】

Effervescence-Inspired Self-Healing Plastrons for Long-Term Immersion Stability

机译:Effervescence-Inspired Self-Healing Plastrons for Long-Term Immersion Stability

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The use of superhydrophobic/superamphiphobic surfaces demands the presence of a stable plastron, i.e., a film of air between micro- and nanostructures. Without actively replenishing the plastron with gases, it eventually disappears during immersion. The air diffuses into the immersion liquid, i.e., water. Current methods for sustaining the plastron under immersion remain limited to techniques such as electrocatalysis, electrolysis, boiling, and air-refilling. These methods are difficult to implement at scale, are either energy-consuming, or require continuous monitoring of the plastron (and subsequent intervention). Here, the concept of passive on-demand recovery of the plastron via the use of a chemical reaction (effervescence) is presented. A superhydrophobic nanostructured surface is layered onto a wetting-reactive, gas-forming (effervescent) sublayer. During extended exposure to moisture, the effervescent layer must be protected by a moisture-absorbent, water-soluble polymer. Under prolonged immersion, partial collapse of the Cassie-state induces contact of water with the effervescent layer. This induces the local formation of gases from effervescence, which restores the Cassie-state. These facile and scalable design principles offer a new route toward intervention-free and immersion-durable superhydrophobic/superamphiphobic surfaces.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号