首页> 外文期刊>Monthly weather review >Simulation of Heavy Precipitation and the Production of Graupel Related to the Passage of a Cold Front over the Australian Snowy Mountains
【24h】

Simulation of Heavy Precipitation and the Production of Graupel Related to the Passage of a Cold Front over the Australian Snowy Mountains

机译:Simulation of Heavy Precipitation and the Production of Graupel Related to the Passage of a Cold Front over the Australian Snowy Mountains

获取原文
获取原文并翻译 | 示例
       

摘要

The case study of a heavy precipitation event associated with the passage of cold front over the Australian Snowy Mountains (ASM) on 3 August 2018 has been examined using the observational data from an intensive field campaign and high-resolution (1 km) Weather Research and Forecasting (WRF) simulation. We divided this event into prefrontal, cold front, and postfrontal periods. The cold front and postfrontal periods were characterized by higher production of graupel, while relatively low graupel was produced in the prefrontal period. Overall, aggregation along with deposition are likely the main growth mechanisms of snow in the prefrontal clouds, while heavy rain was produced below the melting level over windward slopes of the ASM. The simulated melting level is lower compared to the observations, which is consistent with model cold bias. Stronger orographic uplift and frontal forcing were mainly responsible for the enhanced supercooled liquid water (SLW) production over the ASM in the cold front period. A drop in elevation of the freezing level and increase in low-level relative humidity further enhanced the SLW production. The production of graupel through riming processes was highly efficient in the cold front period given the high concentration of ice-phase hydrometeors in the frontal clouds and the development of clouds comprising supercooled liquid water. The orographic updrafts and embedded convection were the main dynamical processes generating postfrontal SLW clouds and graupel. Ice initiation processes were activated once SLW cloud tops reached -15 degrees C level followed by graupel production through riming processes.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号