首页> 外文期刊>The Korean journal of chemical engineering >Physics-informed deep learning for data-driven solutions of computational fluid dynamics
【24h】

Physics-informed deep learning for data-driven solutions of computational fluid dynamics

机译:基于物理的深度学习,用于计算流体动力学的数据驱动解决方案

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Computational fluid dynamics (CFD) is an essential tool for solving engineering problems that involve fluid dynamics. Especially in chemical engineering, fluid motion usually has extensive effects on system states, such as temperature and component concentration. However, due to the critical issue of long computational times for simulating CFD, application of CFD is limited for many real-time problems, such as real-time optimization and process control. In this study, we developed a surrogate model of a continuous stirred tank reactor (CSTR) with van de Vusse reaction using physics-informed neural network (PINN), which can train the governing equations of the system. We propose a PINN architecture that can train every governing equation which a chemical reactor system follows and can train a multi-reference frame system. Also, we investigated that PINN can resolve the problem of neural network that needs a large number of training data, is easily overfitted and cannot contain physical meaning. Furthermore, we modified the original PINN suggested by Raissi to solve the memory error and divergence problem with two methods: Mini-batch training and weighted loss function. We also suggest a similarity-based sampling strategy where the accuracy can be improved up to five times over random sampling. This work can provide a guideline for developing a high performance surrogate model of the chemical process.
机译:计算流体动力学 (CFD) 是解决涉及流体动力学的工程问题的重要工具。特别是在化学工程中,流体运动通常对系统状态有广泛的影响,例如温度和组分浓度。然而,由于模拟CFD的计算时间长这一关键问题,CFD在许多实时问题中的应用受到限制,例如实时优化和过程控制。在这项研究中,我们使用物理信息神经网络 (PINN) 开发了具有 van de Vusse 反应的连续搅拌罐反应器 (CSTR) 的替代模型,该模型可以训练系统的控制方程。我们提出了一种PINN架构,可以训练化学反应器系统遵循的每个控制方程,并可以训练多参考系系统。此外,我们研究了PINN可以解决神经网络需要大量训练数据,容易过度拟合且不能包含物理意义的问题。此外,我们修改了 Raissi 提出的原始 PINN,通过小批量训练和加权损失函数两种方法解决了内存误差和发散问题。我们还提出了一种基于相似性的抽样策略,与随机抽样相比,准确性可以提高多达五倍。这项工作可以为开发化学过程的高性能替代模型提供指导。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号