...
首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Shear Stress and Hemolysis Analysis of Blood Pump under Constant and Pulsation Speed Based on a Multiscale Coupling Model
【24h】

Shear Stress and Hemolysis Analysis of Blood Pump under Constant and Pulsation Speed Based on a Multiscale Coupling Model

机译:Shear Stress and Hemolysis Analysis of Blood Pump under Constant and Pulsation Speed Based on a Multiscale Coupling Model

获取原文
获取原文并翻译 | 示例

摘要

Current researches show that the constant speed mode adopted by the existing commercial blood pump may cause damage to the body. The way to solve this problem is to produce pulsating flow by changing the speed of the blood pump's impeller. But at present, the flow field of the blood pump is not clear, when it changes speed, and the coupling between blood pump and body has not been considered in the simulation of the flow field. A multiscale coupling model combining hemodynamics (0D) and Computational Fluid Dynamics (3D) was established in this paper to solve the problem, and a speed change curve consistent with the ventricular motion was selected. The hemodynamics, shear stress, and hemolysis changes of 6000 rpm at different amplitude (2000, 3000, and 4000 rpm) were simulated, analyzed, and compared with the constant speed (7000 rpm). The results show that the pressure difference obtained by simulation is consistent with the experimental results, and the flow generated by the natural heart still flows through the blood pump, thus changing the working point of the blood pump. When the blood pump works at the changing speed, it could produce more pulsation, and the shear stress and hemolysis in the blood pump increase with the rising of speed and flow. But according to the hemolysis score of a single cardiac cycle, the hemolysis value of the changing speed model at an amplitude of 4000 rpm is only 11.71% higher than that of constant speed at 7000 rpm.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号