首页> 外文期刊>Nanotechnology >Atomic investigations on the tension-compression asymmetry of Al x FeNiCrCu (x=0.5, 1.0, 1.5, 2.0) high-entropy alloy nanowires
【24h】

Atomic investigations on the tension-compression asymmetry of Al x FeNiCrCu (x=0.5, 1.0, 1.5, 2.0) high-entropy alloy nanowires

机译:Al x FeNiCrCu (x=0.5, 1.0, 1.5, 2.0) 高熵合金纳米线拉压不对称性的原子研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The tension and compression of high-entropy alloy (HEA) nanowires (NWs) are remarkably asymmetric, but the micro mechanism is still unclear. In this research, the tension-compression asymmetry of Al x FeNiCrCu HEA NWs (x = 0.5, 1.0, 1.5, 2.0) was quantitatively characterized via molecular dynamics simulations, focusing on the influences of the NW diameter, the Al content, the crystalline orientation, and the temperature, which are significant for applying HEAs in nanotechnology. The increased NW diameter improves the energy required for stacking faults nucleating, thus strengthening AlFeNiCrCu HEA NWs. A few twins during stretching weaken the strengthening effects, thereby decreasing the tension-compression asymmetry. The increased Al content raises the tension-compression asymmetry by promoting the face-centered cubic to body-centered cubic phase transition during stretching. The tension along the 001 crystalline orientation is stronger than the compression, while the 110 and 111 crystalline orientations are entirely the opposite, and the tension-compression asymmetry along the 111 crystalline orientation is the minimum. The diversities in the tension-compression asymmetry depend on the deformation mechanism. Compressing along the 001 crystalline orientation and stretching along the 110 crystalline orientation induces twinning. Deformation along the 111 crystalline orientation only leaves stacking faults in the NWs. Therefore, the tension and compression along the 111 crystalline orientation exhibit minimal asymmetry. As the temperature rises, the tension-compression asymmetry along the 001 and 111 crystalline orientations increases, while that along the 110 crystalline orientation decreases.
机译:高熵合金(HEA)纳米线(NWs)的拉伸和压缩具有显著的不对称性,但其微观机理尚不清楚。本研究通过分子动力学模拟定量表征了Al x FeNiCrCu HEA NWs(x = 0.5, 1.0, 1.5, 2.0)的拉压不对称性,重点关注了NW直径、Al含量、晶体取向和温度的影响,对高熵合金在纳米技术中的应用具有重要意义。NW直径的增加提高了堆叠断层成核所需的能量,从而增强了AlFeNiCrCu HEA NWs。拉伸过程中的几个双胞胎削弱了强化效果,从而降低了拉伸-压缩的不对称性。Al含量的增加通过促进拉伸过程中面心立方向体心立方相变,提高了张压不对称性。[001]晶向的张力强于压缩,而[110]和[111]晶向完全相反,沿[111]晶向的拉压不对称性最小。拉压不对称性的多样性取决于变形机理。沿[001]晶向的压缩和沿[110]晶向的拉伸诱导孪晶。沿[111]晶体取向的变形仅在NW中留下堆积断层。因此,沿[111]晶体取向的拉伸和压缩表现出最小的不对称性。随着温度的升高,沿[001]和[111]晶向的拉压不对称性增大,而沿[110]晶向的拉压不对称性减小。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号