首页> 外文期刊>Journal of medical engineering & technology >An FPGA-based design for power efficient low delay rate adaptive pacemaker using accelerometer and heart rate sensor
【24h】

An FPGA-based design for power efficient low delay rate adaptive pacemaker using accelerometer and heart rate sensor

机译:An FPGA-based design for power efficient low delay rate adaptive pacemaker using accelerometer and heart rate sensor

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a power efficient, low delay and rate adaptive dual chamber pacemaker (PLRDPM) using heart rate and accelerometer sensor. In recent years, number of modifications have been done in the pacemaker design. However, design of an implantable device on an open source is still challenging. Through this paper, we are proposing a "proof of concept" for the design of PLRDPM on FPGA for improving the vital parameters: delay and power consumption. The proposed PLRDPM comprises of accelerometer and heart rate sensors to measure physical activity's effect on heart rate of the bradycardia patients. A rate adaptive pacing algorithm has been designed using two sensor's data, to reduce the delay and power consumption. However, delay in the responses of various components in the circuitry produces an accumulative delay effect in any practical circuit. The delay and the power consumption for the proposed PLRDPM are found to be 2.82 ns and 9mW, respectively.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号