首页> 外文期刊>(mt) Marine technology >Large Two-Stroke Marine Diesel Engine Operation with a High-Pressure SCR System in Heavy Weather Conditions
【24h】

Large Two-Stroke Marine Diesel Engine Operation with a High-Pressure SCR System in Heavy Weather Conditions

机译:Large Two-Stroke Marine Diesel Engine Operation with a High-Pressure SCR System in Heavy Weather Conditions

获取原文
获取原文并翻译 | 示例
       

摘要

The transient performance of a direct-drive large two-stroke marine diesel engine, installed in a vessel operating in a seaway with heavy weather, is investigated via simulation. The main engine of the ship is equipped with a selective catalytic reduction (SCR) after treatment system for compliance with the latest International Maritime Organization (IMO) rules for NOx reduction, IMO Tier Ⅲ. Because of limitations of exhaust gas temperature at the inlet of SCR systems and the low temperature exhaust gases produced by marine diesel engines, in marine applications, the SCR system is installed on the high-pressure side of the turbine. When a ship sails in heavy weather, it experiences a resistance increase, wave-induced motions, and a time-varying flow field in the propeller, induced by ship motions. This results in a fluctuation of the propeller torque demand and, thus, a fluctuation in engine power and exhaust gas temperature, which can affect engine and SCR performance. To investigate this phenomenon and take into account the engine-propeller interaction, the entire propulsion plant was modeled, namely, the slow-speed diesel propulsion engine, the high-pressure SCR system, the directly driven propeller, and the ship's hull. To simulate the transient propeller torque demand, a propeller model was used, and torque variations due to ship motions were taken into account. Ship motions in waves and wave-added resistance were calculated for regular and irregular waves using a 3D panel code. The coupled model was validated against available measured data from a shipboard propulsion system in good weather conditions. The model was then used to simulate the behavior of a Tier Ⅲ marine propulsion plant during acceleration from low to medium load, in the presence of regular and irregular waves. The effect of the time-varying propeller demand on the engine and the SCR system was investigated.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号