首页> 外文期刊>Advanced energy materials >The Roles of Ni and Mn in the Thermal Stability of Lithium-Rich Manganese-Rich Oxide Cathode
【24h】

The Roles of Ni and Mn in the Thermal Stability of Lithium-Rich Manganese-Rich Oxide Cathode

机译:Ni和Mn在富锂富锰氧化物正极热稳定性中的作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The pursuit of high-energy-density lithium-ion batteries (LIBs) has broughtextensive research on the high-capacity lithium-rich manganese-rich oxidecathode (LRMO). However, practical applications of LRMO require a comprehensiveunderstanding of its thermal stability, which determines theboundary for the safe use of LIBs. Here, systematic investigations of thethermal stability of LRMO are carried out by using in situ X-ray diffractionand full-field transmission X-ray microscopy combined with X-ray absorptionnear edge structure. The roles of Ni and Mn in affecting the thermal stabilityof LRMO are uncovered. It is surprising that Ni, despite being in the minority,acts as a key factor that governs the onset temperature of thermal decomposition.Unlike in lithium nickel-cobalt-manganese oxide cathodes where ahigher content of Mn is believed to stabilize the structure with reduced heatrelease, in LRMO it causes more heat release which can be attributed to thelithium excess environment around Mn. In addition, it is revealed that theincomplete coverage of solid polymer electrolytes over the LRMO particlesurface may lead to the deterioration of thermal stability. These findingsprovide mechanistic insights into the thermal behavior of LRMO cathodesfor developing high-capacity cathodes with improved safety, particularly, forfuture applications in solid-state batteries.
机译:对高能量密度锂离子电池(LIB)的追求带来了对高容量富锂富锰氧化物阴极(LRMO)的广泛研究。然而,LRMO的实际应用需要对其热稳定性有全面的了解,这决定了锂离子电池安全使用的边界。本文采用原位X射线衍射和全场透射X射线显微镜结合X射线吸收近边缘结构,对LRMO的热稳定性进行了系统研究。揭示了Ni和Mn在影响LRMO热稳定性中的作用。令人惊讶的是,尽管Ni是少数,但它是控制热分解起始温度的关键因素。与镍钴锰酸锂阴极不同,在锂镍钴锰氧化物阴极中,较高含量的Mn被认为可以通过减少热释放来稳定结构,而在LRMO中,它会导致更多的热量释放,这可归因于Mn周围的锂过量环境。此外,还揭示了固体聚合物电解质在LRMO颗粒表面的不完全覆盖可能导致热稳定性的恶化。这些发现为LRMO阴极的热行为提供了机理见解,用于开发具有更高安全性的高容量阴极,特别是对于未来在固态电池中的应用。

著录项

  • 来源
    《Advanced energy materials》 |2023年第15期|2203989.1-2203989.10|共10页
  • 作者单位

    Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing Frontier Research Center on Clean EnergyHuairou DivisionInstitute of PhysicsChinese Academy of SciencesBeijing 100190, P. R. China,Center of Materials Science and Optoelectronics E;

    Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing Frontier Research Center on Clean EnergyHuairou DivisionInstitute of PhysicsChinese Academy of SciencesBeijing 100190, P. R. China;

    Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo Park, CA 94025, USAStanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo Park, CA 94025, USA,Beijing Synchrotron Radiation FacilityInstitute of High Energy PhysicsChinese Academy of SciencesBeijing 100049, P. R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类
  • 关键词

    cathodes; lithium-rich manganese-rich oxide; solid-state batteries; thermal stability; transmission X-ray microscopy; XANES;

    机译:阴极;富锂富锰氧化物;固态电池;热稳定性;透射X射线显微镜;黄烷;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号