首页> 外文期刊>The Journal of Chemical Physics >Electron ratcheting in self-assembled soft matter
【24h】

Electron ratcheting in self-assembled soft matter

机译:Electron ratcheting in self-assembled soft matter

获取原文
获取原文并翻译 | 示例
           

摘要

Ratcheted multi-step hopping electron transfer systems can plausibly produce directional charge transport over very large distances without requiring a source-drain voltage bias. We examine molecular strategies to realize ratcheted charge transport based on multi-step charge hopping, and we illustrate two ratcheting mechanisms with examples based on DNA structures. The charge transport times and currents that may be generated in these assemblies are also estimated using kinetic simulations. The first ratcheting mechanism described for nanoscale systems requires local electric fields on the 10(9) V/m scale to realize nearly 100% population transport. The second ratcheting mechanism for even larger systems, based on electrochemical gating, is estimated to generate currents as large as 0.1 pA for DNA structures that are a few mu m in length with a gate voltage of about 5 V, a magnitude comparable to currents measured in DNA wires at the nanoscale when a source-drain voltage bias of similar magnitude is applied, suggesting an approach to considerably extend the distance range over which DNA charge transport devices may operate. Published under an exclusive license by AIP Publishing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号