首页> 外文期刊>Advanced energy materials >Advanced Pre-Diagnosis Method of Biomass Intermediates Toward High Energy Dual-Carbon Potassium-Ion Capacitor
【24h】

Advanced Pre-Diagnosis Method of Biomass Intermediates Toward High Energy Dual-Carbon Potassium-Ion Capacitor

机译:生物质中间体面向高能双碳钾离子电容器的先进预诊断方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Potassium ion capacitors (PICs) have the potential to combine the advantages of capacitors and batteries, making them promising energy storage substitutes for existing systems. Biomass-based-electrodes are very promising materials for potassium storage, however, at present, the acquisition of biomass-based-electrodes is mainly dependent on high temperature calcination, which makes the efficient utilization of biomass materials quite challenging. Herein, in accordance with ex-situ C-13 NMR and Raman, a universally directional selection strategy of biomass precursors through an advanced pre-diagnosis method for calcination intermediates and a sulfur engineering strategy are initially proposed, proving that the carbon materials derived from precursors with fewer aliphatic chains and more aromatic carbons show a higher yield and can be have more K ions inserted. In addition, the evolution mechanism of in-plane/interlayered C-S bonds is thoroughly evaluated. Notably, PICs assembled by such carbon materials as the battery-type anode, deliver a high energy density of 151 Wh kg(-1) and an ultrahigh power output of 10 kW kg(-1), closing to state-of-the-art values for PICs. This breakthrough opens up a new avenue for targeted design of biomass materials and offers in-depth insights into the evolution of S-C bonds, promoting the energy/power density of PICs devices to a higher level.
机译:钾离子电容器 (PIC) 具有结合电容器和电池优点的潜力,使其成为现有系统的有前途的储能替代品。生物质基电极是非常有前途的储钾材料,但目前生物质基电极的获取主要依赖于高温煅烧,这使得生物质材料的高效利用具有相当大的挑战性。本文根据非原位C-13核磁共振和拉曼光谱,通过先进的煅烧中间体预诊断方法和硫工程策略,初步提出了一种生物质前驱体的通用定向选择策略,证明脂肪族链少、芳香碳多的前驱体衍生的碳材料产率更高,可插入更多的K离子。此外,还深入评估了面内/层间C-S键的演化机理。值得注意的是,由电池型阳极等碳材料组装的 PIC 具有 151 Wh kg(-1) 的高能量密度和 10 kW kg(-1) 的超高功率输出,接近 PIC 的最新值。这一突破为生物质材料的靶向设计开辟了一条新途径,为S-C键的演化提供了深入的见解,将PICs器件的能量/功率密度提升到更高的水平。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号