...
首页> 外文期刊>Journal of Electrochemical Energy Conversion and Storage >Short-Term Prediction of Remaining Life for Lithium-Ion Battery Based on Adaptive Hybrid Model With Long Short-Term Memory Neural Network and Optimized Particle Filter
【24h】

Short-Term Prediction of Remaining Life for Lithium-Ion Battery Based on Adaptive Hybrid Model With Long Short-Term Memory Neural Network and Optimized Particle Filter

机译:Short-Term Prediction of Remaining Life for Lithium-Ion Battery Based on Adaptive Hybrid Model With Long Short-Term Memory Neural Network and Optimized Particle Filter

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

As an important energy storage device, lithium-ion batteries have vast applications in daily production and life. Therefore, the remaining useful life (RUL) prediction of such batteries is of great significance, which can maintain the efficacy and reliability of the system powered by lithium-ion batteries. For predicting remaining useful life of lithium-ion batteries accurately, an adaptive hybrid battery model and an improved particle filter (PF) are developed. First, the adaptive hybrid model is constructed, which is a combination of empirical model and long short-term memory (LSTM) neural network model such that it could characterize battery capacity degradation trend more effectively. In addition, the adaptive adjustment of the parameters for hybrid model is realized via optimization technique. Then, the beetle antennae search (BAS) based particle filter is applied to update the battery states offline constructed by the proposed adaptive hybrid model, which can improve the estimation accuracy. Finally, remaining useful life short-term prediction is realized online based on long short-term memory neural network rolling prediction combined historical capacity with online measurements and latest offline states and model parameters. The battery data set published by NASA is used to verify the effectiveness of proposed strategy. The experimental results indicate that the proposed adaptive hybrid model can well represent the battery degradation characteristics and have a higher accuracy compared with other models. The short-term remaining useful life prediction results have good performance with the errors of 1 cycle, 3 cycles, and 1 cycle, above results indicate proposed scheme has a good performance on short-term remaining useful life prediction.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号