首页> 外文期刊>The Journal of Chemical Physics >The surface states of transition metal X-ides under electrocatalytic conditions
【24h】

The surface states of transition metal X-ides under electrocatalytic conditions

机译:The surface states of transition metal X-ides under electrocatalytic conditions

获取原文
获取原文并翻译 | 示例
           

摘要

Due to conversion equilibrium between solvent and H- and O-containing adsorbates, the true surface state of a catalyst under a particular electrochemical condition is often overlooked in electrocatalysis research. Herein, by using surface Pourbaix analysis, we show that many electrocatalytically active transition metal X-ides (e.g., oxides, nitrides, carbides, and hydroxides) tend to possess the surface states different from their pristine stoichiometric forms under the pH and potential of interest due to water dissociation or generation. Summarizing the density functional theory calculated surface Pourbaix diagrams of 14 conditionally stable transition metal X-ide materials, we found that some of these surfaces tend to be covered by O-containing adsorbates at a moderate or high potential, while vacancies or H-covered surfaces may form at a low potential. These results suggest the possibility of poisoning or creation of surface sites beyond the pristine surface, implying that the surface state under reaction conditions (pH and potentials) needs to be considered before the identification and analysis of active sites of a transition metal X-ide catalyst. In addition, we provide an explanation of the observed theory and experiment discrepancy that some transition metal X-ides are “more stable in experiment than in theory.” Based on our findings, we conclude that analyzing the surface state of transition metal X-ide electrocatalysts by theoretical calculations (e.g., surface Pourbaix diagram analysis), in situ/operando and post-reaction experiments are indispensable to accurately understand the underlying catalytic mechanisms.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号