首页> 外文期刊>International Journal of Phytoremediation >Bisphenol A removal by the Chlorophyta Picocystis sp.: optimization and kinetic study
【24h】

Bisphenol A removal by the Chlorophyta Picocystis sp.: optimization and kinetic study

机译:Bisphenol A removal by the Chlorophyta Picocystis sp.: optimization and kinetic study

获取原文
获取原文并翻译 | 示例
       

摘要

The Chlorophyta Picocystis sp. isolated from a Tunisian household sewage pond appears promising for effective removal of Bisphenol A (BPA). Efficient and cost-effective technology for contaminants remediation relies on a tradeoff between several parameters such as removal efficiency, microorganism growth, and its tolerance to contaminant toxicity. This article demonstrates the optimum conditions achieving the highest removal rates and the minimal growth inhibition in batch cultures of Picocystis using response surface methodology. A central composite face-centered (CCF) design was used to determine the effects on removal and growth inhibition of four operating parameters: temperature, inoculum cell density, light intensity, and initial BPA concentration. Results showed that the maximal BPA removal was 91.36%, reached the optimal culture conditions of 30.7 degrees C, 25 x 10(5) cells ml(-1) inoculum density, 80.6 mu mol photons m(-2) s(-1) light intensity, and initial BPA concentration of 10 mg l(-1). Various substrate inhibition models were used to fit the experimental data, and robustness analysis highlighted the Tessier model as more efficient to account for the interaction between Picocystis and BPA and predict removal efficiency. These results revealed how Picocystis respond to BPA contamination and suggest that optimization of experimental conditions can be effectively used to maximize BPA removal in the treatment process.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号