首页> 外文期刊>International journal of heat and fluid flow >A new numerical method for determining heat transfer and packing distribution in particle heat exchangers for concentrated solar power
【24h】

A new numerical method for determining heat transfer and packing distribution in particle heat exchangers for concentrated solar power

机译:A new numerical method for determining heat transfer and packing distribution in particle heat exchangers for concentrated solar power

获取原文
获取原文并翻译 | 示例
       

摘要

The complex nature of the physics of solid-gas interactions in concentrated solar particle heat exchangers signifies the need to develop new and cutting-edge numerical models to understand these interactions with the overarching goal of optimizing industrial solar thermal processes. To this end, a coupled computational fluid dynamics and discrete element method is developed to unravel near-wall particle flow physics of solar industrial heat exchangers. In addition, advanced post-processing functions are developed to provide a high-end data visualization and quantitative assessment of the packing distribution of solar particle heat exchangers. The validated numerical model shows that the particle temperature varies considerably throughout the entire fluid filled packed particle bed and it is shown that thermal radiation contribution becomes more profound at higher operating temperatures, namely 1073-1173 K. Also, the temperatures and solid volume fractions of the near-wall particles differ greatly compared to the bulk particles. The methods presented herein can be implemented by engineers and scientists to evaluate near-wall packing distributions and thermal characteristics, which would be useful for optimizing the geometric morphology of solar industrial heat exchangers.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号