首页> 外文期刊>European spine journal >Dysfunctional paraspinal muscles in adult spinal deformity patients lead to increased spinal loading
【24h】

Dysfunctional paraspinal muscles in adult spinal deformity patients lead to increased spinal loading

机译:Dysfunctional paraspinal muscles in adult spinal deformity patients lead to increased spinal loading

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose Decreased spinal extensor muscle strength in adult spinal deformity (ASD) patients is well-known but poorly understood; thus, this study aimed to investigate the biomechanical and histopathological properties of paraspinal muscles from ASD patients and predict the effect of altered biomechanical properties on spine loading. Methods 68 muscle biopsies were collected from nine ASD patients at L4–L5 (bilateral multifidus and longissimus sampled). The biopsies were tested for muscle fiber and fiber bundle biomechanical properties and histopathology. The small sample size (due to COVID-19) precluded formal statistical analysis, but the properties were compared to literature data. Changes in spinal loading due to the measured properties were predicted by a lumbar spine musculoskeletal model. Results Single fiber passive elastic moduli were similar to literature values, but in contrast, the fiber bundle moduli exhibited a wide range beyond literature values, with 22% of 171 fiber bundles exhibiting very high elastic moduli, up to 20 times greater. Active contractile specific force was consistently less than literature, with notably 24% of samples exhibiting no contractile ability. Histological analysis of 28 biopsies revealed frequent fibro-fatty replacement with a range of muscle fiber abnormalities. Biomechanical modelling predicted that high muscle stiffness could increase the compressive loads in the spine by over 500%, particularly in flexed postures. Discussion The histopathological observations suggest diverse mechanisms of potential functional impairment. The large variations observed in muscle biomechanical properties can have a dramatic influence on spinal forces. These early findings highlight the potential key role of the paraspinal muscle in ASD.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号