首页> 外文期刊>Applied and Environmental Microbiology >Identification and Characterization of the Determinants of Copper Resistance in the Acidophilic Fungus Acidomyces richmondensis MEY-1 Using the CRISPR/Cas9 System
【24h】

Identification and Characterization of the Determinants of Copper Resistance in the Acidophilic Fungus Acidomyces richmondensis MEY-1 Using the CRISPR/Cas9 System

机译:使用 CRISPR/Cas9 系统鉴定和表征嗜酸真菌 Acidomyces richmondensis MEY-1 中铜抗性的决定因素

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Filamentous fungi are widely distributed worldwide and play an important ecological role as decomposers. However, the mechanisms of their adaptability to various environments are not fully understood. Copper (Cu) homeostasis has not been well documented in filamentous fungi, especially extremophiles. One of the main obstacles impeding their characterization is the lack of a powerful genome-editing tool. In this study, we applied a CRISPR/Cas9 system for efficient targeted gene disruption in the acidophilic fungus Acidomyces richmondensis MEY-1, formerly known as Bispora sp. strain MEY-1. Using this system, we investigated the basis of Cu tolerance in strain MEY-1. This strain has extremely high Cu tolerance among filamentous fungi, and the transcription factor ArAceA (A. richmondensis AceA) has been shown to be involved in this process. The ArAceA deletion mutant (Delta ArAceA) exhibits specific growth defects at Cu concentrations of >= 10 mM and is transcriptionally more sensitive to Cu than the wild-type strain. In addition, the putative metallothionein ArCrdA was involved in Cu tolerance only under high Cu concentrations. MEY-1 has no Aspergillus nidulans CrpA homologs, which are targets of AceA-like transcription factors and play a role in Cu tolerance. Instead, we identified the Cu-transporting P-type ATPase ArYgA, homologous to A. nidulans YgA, which was involved in pigmentation rather than Cu tolerance. When the Delta ArYgA mutant was grown on medium supplemented with Cu ions, the black color was completely restored. The lack of CrpA homologs in A. richmondensis MEY-1 and its high tolerance to Cu suggest that a novel Cu detoxification mechanism differing from the AceA-CrpA axis exists.IMPORTANCE Filamentous fungi are widely distributed worldwide and play an important ecological role as decomposers. However, the mechanisms of their adaptability to various environments are not fully understood. Various extremely acidophilic filamentous fungi have been isolated from acidic mine drainage (AMD) with extremely low pH and high heavy metal and sulfate concentrations, including A. richmondensis. The lack of genetic engineering tools, particularly genome-editing tools, hinders the study of these acidophilic and heavy metal-resistant fungi at the molecular level. Here, we first applied a CRISPR/Cas9-mediated gene-editing system to A. richmondensis MEY-1. Using this system, we identified and characterized the determinants of Cu resistance in A. richmondensis MEY-1. The conserved roles of the Cu-binding transcription factor ArAceA in Cu tolerance and the Cu-transporting P-type ATPase ArYgA in the Cu-dependent production of pigment were confirmed. Our findings provide insights into the molecular basis of Cu tolerance in the acidophilic fungus A. richmondensis MEY-1. Furthermore, the CRISPR/Cas9 system used here would be a powerful tool for studies of the mechanisms of adaptability of acidophilic fungi to extreme environments.
机译:丝状真菌在世界范围内广泛分布,作为分解者发挥着重要的生态作用。然而,它们对各种环境的适应机制尚不完全清楚。铜 (Cu) 稳态在丝状真菌中尚未得到充分记录,尤其是极端微生物。阻碍其表征的主要障碍之一是缺乏强大的基因组编辑工具。在这项研究中,我们应用CRISPR / Cas9系统对嗜酸真菌Acidomyces richmondensis MEY-1(以前称为Bispora sp.菌株MEY-1)进行有效的靶向基因破坏。利用该系统,我们研究了菌株MEY-1中Cu耐受性的基础。该菌株在丝状真菌中具有极高的铜耐受性,转录因子ArAceA(A. richmondensis AceA)已被证明参与这一过程。ArAceA 缺失突变体 (Delta ArAceA) 在 Cu 浓度为 >= 10 mM 时表现出特异性生长缺陷,并且在转录上对 Cu 的敏感性高于野生型菌株。此外,假定的金属硫蛋白ArCrdA仅在高Cu浓度下参与Cu耐受性。MEY-1 没有构巢曲霉 CrpA 同源物,它们是 AceA 样转录因子的靶标,在 Cu 耐受性中发挥作用。取而代之的是,我们鉴定了与构巢曲霉 YgA 同源的 Cu 转运 P 型 ATP 酶 ArYgA,它参与色素沉着而不是 Cu 耐受性。当Delta ArYgA突变体在补充有Cu离子的培养基上生长时,黑色完全恢复。里士满芋MEY-1中CrpA同源物的缺乏及其对Cu的高耐受性表明存在一种不同于AceA-CrpA轴的新型Cu解毒机制。重要性 丝状真菌在世界范围内广泛分布,作为分解者发挥着重要的生态作用。然而,它们对各种环境的适应机制尚不完全清楚。从酸性矿井排水 (AMD) 中分离出各种极端嗜酸的丝状真菌,这些真菌具有极低的 pH 值和高重金属和硫酸盐浓度,包括 A. richmondensis。基因工程工具的缺乏,特别是基因组编辑工具的缺乏,阻碍了这些嗜酸和重金属抗真菌在分子水平上的研究。在这里,我们首先将CRISPR / Cas9介导的基因编辑系统应用于A. richmondensis MEY-1。使用该系统,我们鉴定并表征了里士满曲霉MEY-1中铜抗性的决定因素。证实了Cu结合转录因子ArAceA在Cu耐受性中的保守作用,以及Cu转运P型ATPase ArYgA在Cu依赖性色素生产中的保守作用。我们的研究结果为嗜酸真菌 A. richmondensis MEY-1 中铜耐受性的分子基础提供了见解。此外,这里使用的CRISPR / Cas9系统将是研究嗜酸真菌对极端环境适应机制的有力工具。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号