【24h】

A Novel Yield Criterion for Nickel-Based Superalloys

机译:A Novel Yield Criterion for Nickel-Based Superalloys

获取原文
获取原文并翻译 | 示例
       

摘要

With the significant evolution of modern gas turbine engines, selection of high-temperature resistant alloys in the hot section is known to be the fundamental solution to enhance the capabilities of these engines. In general, the high-temperature components are mainly comprised of polycrystalline, directionally solidified, and single crystal superalloys. Single crystal (SX) superalloys were developed in the 1980s to achieve high fatigue resistance and substantial creep rupture strength by eliminating grain boundaries. Directional solidification methods enabled the solidification arrangement of the materials to be comprised of columnar grains which are aligned parallel to the direction. These casting types have been frequently used with nickel-based superalloys (NBSAs) to develop modern gas turbine blades. In this work, the yield behavior of generic SX and directionally solidified (DS) NBSAs is studied. By observing various SX and DS alloys, it was concluded with need for a novel criterion that can present anisotropic and tensile/compressive asymmetric yield surfaces. This novel criterion is comprised of the criterion proposed by Hill for anisotropic materials and the method developed by Drucker and Prager for alloys that have different tensile and compressive yield strengths. Additional terms to Hill's criterion are introduced to capture the coupling effect of normal stress and shear stress when the applied loads are not in the direction of principal axes of the material coordinate system for single crystal alloys. The parameters for the criterion are obtained from simple uniaxial tension and compression experiments. Results are compared with various well-established yield criterions. Additionally, the novel criterion is utilized to capture the effective stress and strain of multi-axial loading of turbine blades under nonisothermal conditions

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号