...
首页> 外文期刊>Nanoscale >Decoupling layer metal-organic frameworks via ligand regulation to achieve ultra-thin carbon nanosheets for oxygen reduction electrocatalysisf
【24h】

Decoupling layer metal-organic frameworks via ligand regulation to achieve ultra-thin carbon nanosheets for oxygen reduction electrocatalysisf

机译:通过配体调控解耦层金属有机骨架,实现超薄碳纳米片氧还原电催化

获取原文
获取原文并翻译 | 示例

摘要

2D imidazole MOFs are considered to be ideal carbon precursors for oxygen reduction reactions owing to their adjustable ligand components and durable coordination mode.Due to the massive electron de-localization in the lamella,the conjugative effect among 2D MOF layers immensely restricts the exposure of catalytic sites after carbonization,which makes the decoupling layer extremely important on the premise of ensuring activity.Herein,atomic thickness ultra-thin zinc-imidazole MOF precursors were prepared through a bottom-up ligand regulated strategy to achieve the aim of lamellar decoupling.The introduction of heterologous ligands excites stable delocalized electrons,resulting in a decrease in the interlayer force of 2D zinc-imidazole MOF precursors.Subsequent salt template-supported ammonia pyrolysis assisted the MOF-derived carbon sheets to grow along the transverse direction and optimize pore size distribution as did the doping nitrogen type.The MOF-derived carbon sheets demonstrated increasing mesopores and fringe graphitic N which could significantly promote the mass transfer and electron transfer speed during the oxygen reduction reaction.In addition,the obtained ultra-thin carbon delivered an outstanding onset potential(0.98 V vs.RHE)and durability(retaining 91 of the initial current after 12000 s of operation),showing tremendous commercial prospects in sustainable energy.
机译:2D咪唑MOFs因其可调节的配体组分和持久的配位模式而被认为是氧还原反应的理想碳前驱体。由于薄片中大量的电子离域,二维MOF层之间的共轭效应极大地限制了碳化后催化位点的暴露,这使得解耦层在保证活性的前提下极为重要。本文采用自下而上的配体调控策略制备了原子厚度超薄锌咪唑MOF前驱体,以达到层状解耦的目的。异源配体的引入激发了稳定的离域电子,导致二维锌咪唑MOF前驱体的层间力降低。随后的盐模板负载氨热解帮助MOF衍生的碳片沿横向生长并优化孔径分布,掺杂氮类型也是如此。MOF衍生碳片的介孔和条纹石墨氮含量增加,可显著促进氧还原反应过程中的传质和电子传递速度。此外,所获得的超薄碳具有出色的起始电位(0.98 V vs.RHE)和耐久性(运行12000 s后仍保留91%的初始电流),在可持续能源方面显示出巨大的商业前景。

著录项

  • 来源
    《Nanoscale》 |2022年第32期|11684-11692|共9页
  • 作者单位

    Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies,College of Materials Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;

    School of Materials Science and Engineering,Xi’an University of Technology,Xi’an,710048,China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类 分子物理学、原子物理学;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号