...
首页> 外文期刊>Journal of Medicinal Chemistry >Lead Optimization and Structure-Activity Relationship Studies on Myeloid Ecotropic Viral Integration Site 1 Inhibitor
【24h】

Lead Optimization and Structure-Activity Relationship Studies on Myeloid Ecotropic Viral Integration Site 1 Inhibitor

机译:Lead Optimization and Structure-Activity Relationship Studies on Myeloid Ecotropic Viral Integration Site 1 Inhibitor

获取原文
获取原文并翻译 | 示例

摘要

The pivotal role of the myeloid ecotropic viral integration site 1 (MEIS1) transcriptional factor was reported in cardiac regeneration and hematopoietic stem-cell (HSC) regulation with our previous findings. MEIS1 as a promising target in the context of pharmacological inhibition, we identified a potent myeloid ecotropic viral integration site (MEIS) inhibitor, MEISi-1, to induce murine and human HSC expansion ex vivo and in vivo. In this work, we performed lead optimization on MEISi-1 by synthesizing 45 novel analogues. Structure-activity relationship studies revealed the significance of a para-methoxy group on ring A and a hydrophobic moiety at the meta position of ring B. Obtained biological data were supported by inhibitor docking and molecular dynamics simulation studies. Eleven compounds were depicted as potent inhibitors demonstrating a better inhibitory profile on MEIS1 and target genes Meis1, Hif-1 alpha, and p21. Among those, 4h, 4f, and 4b were the most potent inhibitors. The predicted pharmacokinetics properties fulfill drug-likeness criteria. In addition, compounds exerted neither cytotoxicity on human dermal fibroblasts nor mutagenicity.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号