...
首页> 外文期刊>Journal of Hazardous Materials >Temporal and spatial far-ultraviolet disinfection of exhaled bioaerosols in a mechanically ventilated space
【24h】

Temporal and spatial far-ultraviolet disinfection of exhaled bioaerosols in a mechanically ventilated space

机译:Temporal and spatial far-ultraviolet disinfection of exhaled bioaerosols in a mechanically ventilated space

获取原文
获取原文并翻译 | 示例
           

摘要

Far-UVC with a peak wavelength of 222 nm can potentially be used to inactivate exhaled bioaerosols in an efficient and safe manner. Therefore, this study aimed to experimentally explore the effectiveness of a 222 nm far-UVC light for inactivating bioaerosols, represented by E. coli, exhaled from a manikin in a chamber with mechanical ventilation. The spatial irradiance distribution from the far-UVC light was measured. The susceptibility constant (z-value) for E. coli under the far-UVC light was experimentally obtained. The temporal and spatial concentrations of the bioaerosols exhaled from the manikin were measured under three typical ventilation rates (4, 10, and 36 ACH). According to the results, when the far-UVC light was turned on, the bioaerosol concentrations were lower than those without the far-UVC light under all three ventilation rates, suggesting that farUVC light can effectively disinfect E. coli under mechanical ventilation. However, the disinfection efficiency of the far-UVC light decreased as the ventilation rate increased, which indicated that the far-UVC light played a more important role in bioaerosol removal under a lower ventilation rate. In general, the results supported the feasibility of using 222 nm far-UVC light for disinfection of exhaled bioaerosols in mechanically ventilated spaces to reduce infection risks.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号