首页> 外文期刊>IEEE Journal on Selected Areas in Communications >Fast MIMO Beamforming via Deep Reinforcement Learning for High Mobility mmWave Connectivity
【24h】

Fast MIMO Beamforming via Deep Reinforcement Learning for High Mobility mmWave Connectivity

机译:Fast MIMO Beamforming via Deep Reinforcement Learning for High Mobility mmWave Connectivity

获取原文
获取原文并翻译 | 示例
           

摘要

Future 5G/6G wireless networks will be increasingly using millimeter waves (mmWaves), where fast and efficient beamforming is vital for providing continuous service to highly mobile devices in the presence of interference and signal attenuation, manifested by blockage. In this paper, we propose a novel and efficient method for mmWave beamforming in massive multiple-input multiple-output (MIMO) systems to achieve the aforementioned goals with low complexity in such scenarios. In doing so, we utilize deep reinforcement learning (DRL) to maximize the network’s energy efficiency subject to the quality of service (QoS) constraint for each user equipment (UE) and obtain its hybrid beamforming matrices. In doing so, we assume each UE is simultaneously associated with multiple access points (APs), i.e., simultaneous beamforming to/from multiple APs (coordinated multipoints) is needed for each UE. We also propose a low-complexity training algorithm, based on approximate message passing, which is well suited for the network edge. Besides, we develop a distributed scheme to reduce communications overhead via federated DRL. Extensive simulations show significant performance improvement over existing methods.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号