首页> 外文期刊>International journal of structural stability and dynamics >Simulation of Thin-Walled Members with Arbitrary-Shaped Cross-Sections for Static and Dynamic Analyses
【24h】

Simulation of Thin-Walled Members with Arbitrary-Shaped Cross-Sections for Static and Dynamic Analyses

机译:Simulation of Thin-Walled Members with Arbitrary-Shaped Cross-Sections for Static and Dynamic Analyses

获取原文
获取原文并翻译 | 示例
       

摘要

The main objective of this paper is to validate a finite-element (FE) modeling protocol to simulate thin-walled members for static and dynamic analyses. Arbitrary-shaped cross-sections, including open, closed, and multicellular sections can be efficiently modeled for further advanced study. The framework is thoroughly validated and verified using the existing analytical and closed-form solutions, as well as experimental results available in literature. This work is motivated by the higher accuracy of the shell FE-based modeling to capture the local and global complex behaviors of thin-walled members with asymmetric sections. Higher computational expenses, however, are required for such sophisticated shell finite element models (SFEM). Accordingly, a framework hosted in MATLAB and implementing the python scripting technique in ABAQUS, is developed, which includes eigen buckling, static nonlinear, modal frequency and dynamic time-history analyses. For a more modeling convenience, various parameters are incorporated such as imperfections, residual stresses, material definitions. element choice, meshing control, and boundary conditions. Several examples are provided to illustrate the application of the proposed framework, and to prove the robustness and accuracy of the generated FE models. This paper concludes with the efficiency of implementing SFEMs for simulating thin-walled members; thereby, establishing a more accurate and advanced structural analysis.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号