...
首页> 外文期刊>American Journal of Physiology >Flight training in a migratory bird drives metabolic gene expression in the flight muscle but not liver, and dietary fat quality influences select genes
【24h】

Flight training in a migratory bird drives metabolic gene expression in the flight muscle but not liver, and dietary fat quality influences select genes

机译:Flight training in a migratory bird drives metabolic gene expression in the flight muscle but not liver, and dietary fat quality influences select genes

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Training and diet are hypothesized to directly stimulate key molecular pathways that mediate animal performance, and flight training, dietary fats, and dietary antioxidants are likely important in modulating molecular metabolism in migratory birds. This study experimentally investigated how long-distance flight training, as well as diet composition, affected the expression of key metabolic genes in the pectoralis muscle and the liver of European starlings (Sturnus vulgaris, n = 95). Starlings were fed diets composed of either a high or low polyunsaturated fatty acid (PUFA; 18:2n-6) and supplemented with or without a water-soluble antioxi-dant, and one-half of these birds were flight trained in a wind-tunnel while the rest were untrained. We measured the expression of 7 (liver) or 10 (pectoralis) key metabolic genes in flight-trained and untrained birds. Fifty percent of genes involved in mitochondrial metabolism and fat utilization were upregulated by flight training in the pectoralis (P < 0.05), whereas flight training increased the expression of only one gene responsible for fatty acid hydrolysis [lipoprotein lipase (LPL)] in the liver (P = 0.04). Dietary PUFA influenced the gene expression of LPL and fat transporter fatty acid translocase (CD36) in the pectoralis and one metabolic transcription factor [peroxisome proliferator-activated receptor (PPAR)-a (PPARoc)] in the liver, whereas dietary antioxidants had no effect on the metabolic genes measured in this study. Flight training initiated a simpler causal network between PPARy coactivators, PPARs, and metabolic genes involved in mitochondrial metabolism and fat storage in the pectoralis. Molecular metabolism is modulated by flight training and dietary fat quality in a migratory songbird, indicating that these environmental factors will affect the migratory performance of birds in the wild.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号