...
首页> 外文期刊>IEEE journal of selected topics in quantum electronics: A publication of the IEEE Lasers and Electro-optics Society >Bayesian Photonic Accelerators for Energy Efficient and Noise Robust Neural Processing
【24h】

Bayesian Photonic Accelerators for Energy Efficient and Noise Robust Neural Processing

机译:Bayesian Photonic Accelerators for Energy Efficient and Noise Robust Neural Processing

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Artificial neural networks are efficient computing platforms inspired by the brain. Such platforms can tackle a vast area of real-life tasks ranging from image processing to language translation. Silicon photonic integrated chips (PICs), by employing coherent interactions in Mach-Zehnder interferometers, are promising accelerators offering record low power consumption and ultra-fast matrix multiplication. Such photonic accelerators, however, suffer from phase uncertainty due to fabrication errors and crosstalk effects that inhibit the development of high-density implementations. In this work, we present a Bayesian learning framework for such photonic accelerators. In addition to the conventional log-likelihood optimization path, two novel training schemes are derived, namely a regularized version and a fully Bayesian learning scheme. They are applied on a photonic neural network with 512 phase shifters targeting the MNIST dataset. The new schemes, when combined with a pre-characterization stage that provides the passive offsets, are able to dramatically decrease the operational power of the PIC beyond 70%, with just a slight loss in classification accuracy. The full Bayesian scheme, apart from this energy reduction, returns information with respect to the sensitivity of the phase shifters. This information is used to de-activate 31% of the phase actuators and, thus, significantly simplify the driving system.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号