首页> 外文期刊>Journal of the American Chemical Society >Atomic Replacement of PtNi Nanoalloys within Zn-ZIF-8 for the Fabrication of a Multisite CO2 Reduction Electrocatalyst
【24h】

Atomic Replacement of PtNi Nanoalloys within Zn-ZIF-8 for the Fabrication of a Multisite CO2 Reduction Electrocatalyst

机译:Atomic Replacement of PtNi Nanoalloys within Zn-ZIF-8 for the Fabrication of a Multisite CO2 Reduction Electrocatalyst

获取原文
获取原文并翻译 | 示例
       

摘要

Exploring the transformation/interconversion pathways of catalytic active metal species (single atoms, clusters, nanoparticles) on a support is crucial for the fabrication of high efficiency catalysts, the investigation of how catalysts are deactivated, and the regeneration of spent catalysts. Sintering and redispersion represent the two main transformation modes for metal active components in heterogeneous catalysts. Herein, we established a novel solid-state atomic replacement transformation for metal catalysts, through which metal atoms exchanged between single atoms and nanoalloys to form a new set of nanoalloys and single atoms. Specifically, we found that the Ni of the PtNi nanoalloy and the Zn of the ZIF-8-derived Zn1 on nitrogen-doped carbon (Zn1-CN) experienced metal interchange to produce PtZn nanocrystals and Ni single atoms (Ni1-CN) at high temperature. The elemental migration and chemical bond evolution during the atomic replacement displayed a Ni and Zn mutual migration feature. Density functional theory calculations revealed that the atomic replacement was realized by endothermically stretching Zn from the CN support into the nanoalloy and exothermically trapping Ni with defects on the CN support. Owing to the synergistic effect of the PtZn nanocrystal and Ni1-CN, the obtained (PtZn)n/Ni1-CN multisite catalyst showed a lower energy barrier of CO2 protonation and CO desorption than that of the reference catalysts in the CO2 reduction reaction (CO2RR), resulting in a much enhanced CO2RR catalytic performance. This unique atomic replacement transformation was also applicable to other metal alloys such as PtPd.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号