首页> 外文期刊>Journal of Molecular Biology >Ste24: An Integral Membrane Protein Zinc Metalloprotease with Provocative Structure and Emergent Biology
【24h】

Ste24: An Integral Membrane Protein Zinc Metalloprotease with Provocative Structure and Emergent Biology

机译:Ste24: An Integral Membrane Protein Zinc Metalloprotease with Provocative Structure and Emergent Biology

获取原文
获取原文并翻译 | 示例
       

摘要

Ste24, an integral membrane protein zinc metalloprotease, is found in every kingdom of eukaryotes. It was discovered approximately 20 years ago by yeast genetic screens identifying it as a factor responsible for processing the yeast mating a-factor pheromone. In animals, Ste24 processes prelamin A, a component of the nuclear lamina; mutations in the human ortholog of Ste24 diminish its activity, giving rise to genetic diseases of accelerated aging (progerias). Additionally, lipodystrophy, acquired from the standard highly active antiretroviral therapy used to treat AIDS patients, likely results from off-target interactions of HIV (aspartyl) protease inhibitor drugs with Ste24. Ste24 possesses a novel "alpha-barrel" structure, consisting of a ring of seven transmembrane a-helices enclosing a large (>12,000 angstrom(3)) interior volume that contains the active-site and substrate-binding region; this "membrane-interior reaction chamber" is unprecedented in integral membrane protein structures. Additionally, the surface of the membrane-interior reaction chamber possesses a strikingly large negative electrostatic surface potential, adding additional "functional mystery." Recent publications implicate Ste24 as a key factor in several endoplasmic reticulum processes, including the unfolded protein response, a cellular stress response of the endoplasmic reticulum, and removal of misfolded proteins from the translocon. Ste24, with its provocative structure, enigmatic mechanism, and recently emergent new biological roles including "translocon unclogger" and (non-enyzmatic) broad-spectrum viral restriction factor, presents far differently than before 2016, when it was viewed as a "CAAX protease" responsible for cleavage of prenylated (farnesylated or geranylgeranylated) substrates. The emphasis of this review is on Ste24 of the "Post-CAAX-Protease Era." (C) 2020 Elsevier Ltd. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号