首页> 外文期刊>Advanced energy materials >Rationally Designed Sodium Chromium Vanadium Phosphate Cathodes with Multi-Electron Reaction for Fast-Charging Sodium-Ion Batteries
【24h】

Rationally Designed Sodium Chromium Vanadium Phosphate Cathodes with Multi-Electron Reaction for Fast-Charging Sodium-Ion Batteries

机译:合理设计的多电子反应磷酸铬钒钠正极用于快速充电钠离子电池

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Sodium super-ionic conductor (NASICON)-structured phosphates are emergingas rising stars as cathodes for sodium-ion batteries. However, they usuallysuffer from a relatively low capacity due to the limited activated redox couplesand low intrinsic electronic conductivity. Herein, a reduced graphene oxidesupported NASICON Na_3Cr_(0.5)V_(1.5)(PO_4)_3 cathode (VC/C-G) is designed, whichdisplays ultrafast (up to 50 C) and ultrastable (1 000 cycles at 20 C) Na~+ storageproperties. The VC/C-G can reach a high energy density of ≈470 W h kg?1 at0.2 C with a specific capacity of 176 mAh g?1 (equivalent to the theoretical value);this corresponds to a three-electron transfer reaction based on fully activatedV~(5+)/V~(4+), V~(4+)/V~(3+), V3+/V2+ couples. In situ X-ray diffraction (XRD) results disclosea combination of solid-solution reaction and biphasic reaction mechanismsupon cycling. Density functional theory calculations reveal a narrow forbiddenbandgap of 1.41 eV and a low Na~+ diffusion energy barrier of 0.194 eV. Furthermore,VC/C-G shows excellent fast-charging performance by only taking ≈11 minto reach 80 state of charge. The work provides a widely applicable strategy forrealizing multi-electron cathode design for high-performance SIBs.
机译:钠超离子导体 (NASICON) 结构的磷酸盐正在成为钠离子电池阴极的后起之秀。然而,由于活化的氧化还原电偶有限和本征电子电导率低,它们通常具有相对较低的容量。本文设计了一种还原氧化石墨烯负载的NASICON Na_3Cr_(0.5)V_(1.5)(PO_4)_3阴极(VC/CG),具有超快(高达50 C)和超稳定(20 C下1 000次循环)Na~+的存储特性。VC/C-G在0.2 C时能达到≈470 W h kg?1的高能量密度,比容量为176 mAh g?1(相当于理论值);这对应于基于完全活化的V~(5+)/V~(4+)、V~(4+)/V~(3+)、V3+/V2+耦合的三电子转移反应。原位X射线衍射(XRD)结果揭示了固溶反应和循环时双相反应机理的组合。密度泛函理论计算表明,其禁带隙窄,为1.41 eV,Na~+扩散能垒低至0.194 eV。此外,VC/C-G 仅需 ≈11 分钟即可达到 80% 的充电状态,显示出出色的快速充电性能。该工作为实现高性能SIBs的多电子阴极设计提供了一种广泛适用的策略。

著录项

  • 来源
    《Advanced energy materials》 |2022年第25期|2201065.1-2201065.10|共10页
  • 作者单位

    Christopher Ingold LaboratoryDepartment of ChemistryUniversity College LondonLondon WC1H 0AJ, UK,School of Metallurgy and EnvironmentCentral South UniversityChangsha 410083, P. R. China;

    School of Metallurgy and EnvironmentCentral South UniversityChangsha 410083, P. R. China;

    Jiangsu Key Laboratory of Electrochemical Energy Storage TechnologiesCollege of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing 210016, P. R. ChinaDepartment of ChemistryCity University of Hong Kong, KowloonHong Kong 999077, P. R. ChinaSchool of ChemistryXi’an Jiaotong UniversityXi’an 710049, P. R. ChinaChristopher Ingold LaboratoryDepartment of ChemistryUniversity College LondonLondon WC1H 0AJ, UKDepartment of Chemical EngineeringUniversity College LondonLondon WC1E 7JE, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类
  • 关键词

    fast-charging; multielectron reaction; NASICON; Sodium-ion batteries;

    机译:快充;多电子反应;纳西康;钠离子电池;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号