首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Numerical Stability and Accuracy of CCPR-FDTD for Dispersive Medi
【24h】

Numerical Stability and Accuracy of CCPR-FDTD for Dispersive Medi

机译:Numerical Stability and Accuracy of CCPR-FDTD for Dispersive Medi

获取原文
获取原文并翻译 | 示例
           

摘要

The complex-conjugate pole-residue (CCPR) model has been popularly adopted because CCPR-finite-difference time domain (FDTD) can reduce the memory requirement with the help of complex conjugate property of auxiliary variables. To fully utilize CCPR-FDTD, it is of great necessity to investigate its numerical stability since the FDTD method is conditionally stable. Nonetheless, the numerical stability conditions of CCPR-FDTD have not been studied because its derivation is not straightforward. In this communication, the numerical stability conditions of CCPR-FDTD are systematically derived by combining the von Neumann method with Routh-Hurwitz criterion. It is found that the numerical stability conditions of CCPR-FDTD are the same as those of the modified Lorentz-FDTD with bilinear transform. Moreover, the numerical accuracy of CCPR-FDTD is studied, and numerical examples are employed to validate this work.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号