...
首页> 外文期刊>International journal of pervasive computing and communications >A network controlled vertical handoff mechanism for heterogeneous wireless network using optimized support vector neural network
【24h】

A network controlled vertical handoff mechanism for heterogeneous wireless network using optimized support vector neural network

机译:A network controlled vertical handoff mechanism for heterogeneous wireless network using optimized support vector neural network

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose - Vertical handoff mechanism (VHO) becomes very popular because of the improvements in the mobility models. These developments are less to certain circumstances and thus do not provide support in generic mobility, but the vertical handover management providing in the heterogeneous wireless networks (HWNs) is crucial and challenging. Hence, this paper introduces the vertical handoff management approach based on an effective network selection scheme.Design/methodology/approach - This paper aims to improve the working principle of previous methods and make VHO more efficient and reliable for the HWN.Initially, the handover triggering techniques is moedlled for identifying an appropriate place to initiate handover based on the computed coverage area of cellular base station or wireless local area network (WLAN) access point. Then, inappropriate networks are eliminated for determining the better network to perform handover. Accordingly, a network selection approach is introduced on the basis ofthe Fractional-dolphin echolocation-based support vector neural network (Fractional-DE-based SVNN). The Fractional-DE is designed by integrating Fractional calculus (FC) in Dolphin echolocation (DE), and thereby, modifying the update rule of the DE algorithm based on the location of the solutions in past iterations. The proposed Fractional-DE algorithm is used to train Support vector neural network (SVNN) for selecting the best weights. Several parameters, like Bit error rate (BER), End to end delay (EED), jitter, packet loss, and energy consumption are considered for choosing the best network.Findings - The performance of the proposed VHO mechanism based on Fractional-DE is evaluated based on delay, energy consumption, staytime, and throughput. The proposed Fractional-DE method achieves the minimal delay of 0.0100 sec, the minimal energy consumption of 0.348, maximal staytime of 4.373 sec, and the maximal throughput of 109.20 kbps.Originality/value - In this paper, a network selection approach is introduced on the basis of the Fractional-Dolphin Echolocation-based Support vector neural network (Fractional-DE-based SVNN). The Fractional-DE is designed by integrating Fractional calculus (FC) in Dolphin echolocation (DE), and thereby, modifying the update rule of the DE algorithm based on the location of the solutions in past iterations. The proposed Fractional-DE algorithm is used to train SVNN for selecting the best weights. Several parameters, like Bit error rate (BER), End to end delay (EED), jitter, packet loss, and energy consumption are considered for choosing the best network.The performance of the proposed VHO mechanism based on Fractional-DE is evaluated based on delay, energy consumption, staytime, and throughput, in which the proposed method offers the best performance.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号