首页> 外文期刊>Journal of geophysical research >Influence of Mercury's Exosphere on the Structure of the Magnetosphere
【24h】

Influence of Mercury's Exosphere on the Structure of the Magnetosphere

机译:水星外逸层对磁层结构的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

abstract_textpMercury is embedded in a tenuous and highly anisotropic sodium exosphere, generated mainly by plasma-surface interactions. The absolute values of the sodium ion density are still under debate. Observations by MESSENGER's Fast Imaging Plasma Spectrometer (FIPS) instrument suggest the density of exospheric ions to be several orders of magnitude lower than the upstream solar wind density, indicating that the sodium exosphere has no substantial influence on the magnetospheric current systems. However, MESSENGER magnetic field observations of field line resonances revealed sodium ion densities comparable to the upstream solar wind density. To investigate how a dense exosphere would affect the current systems within Mercury's magnetosphere, we apply an established hybrid (kinetic ions, fluid electrons) model and conduct multiple model runs with gradually increasing exospheric density, ranging from no sodium ions at all to comet-like configurations. We demonstrate how a sufficiently dense exosphere leads to self-shielding of the sodium ion population from the ambient electric field and a significant inflation and symmetrization of Mercury's magnetosphere, which is decreasingly affected by the dipole offset. Once the sodium ion density is sufficiently high, Region 2 field-aligned currents emerge close to the planet. The modeled Region 2 currents are located below the orbit of MESSENGER, thereby providing a possible explanation for the absence of these currents in observations. The sodium exosphere also closes a significant fraction of the Region 1 currents through Pedersen and Hall currents before the "guiding" magnetic field lines even reach the planetary surface. The modeled sodium ion and solar wind densities agree well with observations./p/abstract_text
机译:汞嵌入一个脆弱且高度各向异性的钠外逸层中,主要由等离子体-表面相互作用产生。钠离子密度的绝对值仍在争论中。MESSENGER的快速成像等离子体光谱仪(FIPS)仪器的观测表明,外层离子的密度比上游的太阳风密度低几个数量级,表明钠外逸层对磁层洋流系统没有实质性影响。然而,MESSENGER磁场对磁线共振的观测显示,钠离子密度与上游太阳风密度相当。为了研究密集的外逸层如何影响水星磁层内的当前系统,我们应用了一个已建立的混合(动能离子,流体电子)模型,并以逐渐增加的外层密度进行多次模型运行,范围从完全没有钠离子到类似彗星的构型。我们展示了足够密集的外逸层如何导致钠离子群免受环境电场的自我屏蔽,以及水星磁层的显着膨胀和对称化,水星磁层受偶极子偏移的影响逐渐减弱。一旦钠离子密度足够高,区域 2 场对齐的电流就会出现在行星附近。模拟的区域2洋流位于MESSENGER轨道下方,从而为观测中没有这些洋流提供了可能的解释。在“引导”磁力线到达行星表面之前,钠外逸层还关闭了通过Pedersen和霍尔电流的1区电流的很大一部分。模拟的钠离子和太阳风密度与观测结果非常吻合。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号