首页> 外文期刊>Marine biotechnology >Mantle Transcriptome Provides Insights into Biomineralization and Growth Regulation in the Eastern Oyster (Crassostrea virginica)
【24h】

Mantle Transcriptome Provides Insights into Biomineralization and Growth Regulation in the Eastern Oyster (Crassostrea virginica)

机译:Mantle Transcriptome Provides Insights into Biomineralization and Growth Regulation in the Eastern Oyster (Crassostrea virginica)

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Growth of the eastern oyster Crassostrea virginica, a major aquaculture species in the USA, is highly variable and not well understood at molecular levels. As growth of mollusks is confined in shells constructed by the mantle, mantle transcriptomes of large (fast-growing) and small (slow-growing) eastern oysters were sequenced and compared in this study. Transcription was observed for 31,186 genes, among which 104 genes were differentially expressed between the large and small oysters, including 48 upregulated and 56 downregulated in large oysters. Differentially expressed genes (DEGs) included genes from diverse pathways highlighting the complexity of shell formation and growth regulations. Seventeen of the 48 upregulated DEGs were related to shell matrix formation, most of which were upregulated in large oysters, indicating that large oysters are more active in biomineralization and shell formation. Genomic and transcriptomic analyses identified 22 genes encoding novel polyalanine containing proteins (Pacps) with characteristic motifs for matrix function that are tandemly duplicated on one chromosome, all specifically expressed in mantle and at higher levels in large oysters, suggesting that these expanded Pacps play important roles in shell formation and growth. Analysis of sequence variation identified 244,964 SNPs with 328 associated with growth. This study provides novel candidate genes and markers for shell formation and growth, and suggests that genes related to shell formation are important for the complex regulation of growth in the eastern oyster and possibly other bivalve mollusks. Results of this study show that both transcriptional modulation and functional polymorphism are important in determining growth.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号